Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions 7-polytope - Wikipedia, the free encyclopedia

7-polytope

From Wikipedia, the free encyclopedia

In geometry, a seven-dimensional polytope, or 7-polytope, is a polytope in 7-dimensional space. Each 5-polytope ridge being shared by exactly two 6-polytope facets.

A proposed name for 7-polytope is polyexon (plural: polyexa), created from poly-, exa- and -on.

Contents

[edit] Regular and uniform polyexa by fundamental Coxeter groups

Regular polyexa can be be generated from Coxeter groups represented by the Schläfli symbol {p,q,r,s,t,u} with u {p,q,r,s,t} polypeton facets around each hypercell.

Uniform polyexa can be generated by fundamental finite Coxeter groups.

There are four fundamental finite Coxeter groups that generate regular and uniform 7-polytopes, two linear and two bifurcating:

  1. A7 [3,3,3,3,3,3] - Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    • 71 uniform polyexa as permutations of rings in the group diagram, including one regular:
      1. {3,3,3,3,3,3} - octaexon or 7-simplex, Image:CDW_ring.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
        • It has 8 vertices, 28 edges, 56 faces, 70 cells, 56 hypercells, 28 5-faces, and 8 6-faces/facets. All elements are simplexes.
  2. C7 [4,3,3,3,3,3] - Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    • 63 uniform polyexons as permutations of rings in the group diagram, including two regular ones:
      1. {4,3,3,3,3,3} - hepteract or 7-hypercube Image:CDW_ring.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
        • It has 128 vertices, 448 edges, 672 faces, 560 cells, 280 hypercells, 84 5-face, and 14 6-faces/facets. All elements are hypercubes.
      2. {3,3,3,3,3,4} - heptacross or 7-cross-polytope Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_ring.png
        • It has 14 vertices, 84 edges, 280 faces, 560 cells, 672 hypercells, 448 5-faces, and 128 6-faces/facets. All elements are simplexes.
  3. B7 [34,1,1] - Image:CD dot.pngImage:CD 3.pngImage:CD_downbranch-00.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD dot.png
    •  ? uniform polypeta as permutations of rings in the group diagram, including one from the demihypercube family:
      1. {34,1,1} - demihepteract Image:CD ring.pngImage:CD 3.pngImage:CD_downbranch-00.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD dot.png; also as h{4,3,3,3,3,3} Image:CDW_hole.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png
        • It has 64 vertices, 672 edges, 2240 faces, 2800 cells, 1624 hypercells, 532 5-faces, and 78 6-faces/facets. The facets are: 14 demihexeract and 64 6-simplexes.
  1. E7 [33,2,1] - Image:CD dot.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD_downbranch-00.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD dot.png
    •  ? uniform polypeta as permutations of rings in the group diagram, including one semiregular:
      1. {33,2,1} - Image:CD ring.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD_downbranch-00.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD dot.png, Thorold Gosset's semiregular polytope, 32,1:
        • It has 56 vertices, 756 edges, 4032 faces, 10080 cells, 12096 4-faces, 6048 5-faces, and 702 6-faces/facets. The regular facets are of two types: 126 pentacrosses and 576 simplexes.

[edit] Uniform prismatic forms

There are 37 uniform prismatic forms based on Cartesian products of lower dimensional polytopes:

    1. A6xA1: [3,3,3,3,3,3] Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.png
    2. C6xA1: [4,3,3,3,3,3] Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.png
    3. B6xA1: Image:CD dot.pngImage:CD 3.pngImage:CD_downbranch-00.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD dot.pngImage:CD 2.pngImage:CD dot.png
    4. E6xA1: Image:CD dot.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD_downbranch-00.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD dot.pngImage:CD 2.pngImage:CD dot.png
    5. A5xD2p: [3,3,3] x [p] Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW 2.pngImage:CDW dot.pngImage:CDW p.pngImage:CDW dot.png
    6. C5xD2p: [4,3,3] x [p] Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW 2.pngImage:CDW dot.pngImage:CDW p.pngImage:CDW dot.png
    7. B5xD2p: Image:CD dot.pngImage:CD 3.pngImage:CD_downbranch-00.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD dot.pngImage:CD 2.pngImage:CD dot.pngImage:CD p.pngImage:CD dot.png
    8. A4xA3: [3,3,3] x [3,3] Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    9. A4xC3: [3,3,3] x [4,3] Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    10. A4xG3: [3,3,3] x [5,3] Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    11. C4xA3: [4,3,3] x [3,3] Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    12. C4xC3: [4,3,3] x [4,3] Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    13. C4xG3: [4,3,3] x [5,3] Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    14. G4xA3: [5,3,3] x [3,3] Image:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    15. G4xC3: [5,3,3] x [4,3] Image:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    16. G4xG3: [5,3,3] x [5,3] Image:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    17. F4xA3: [3,4,3] x [3,3] Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    18. F4xC3: [3,4,3] x [4,3] Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    19. F4xG3: [3,4,3] x [5,3] Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    20. B4xA3: Image:CD dot.pngImage:CD 3.pngImage:CD_downbranch-00.pngImage:CD 3.pngImage:CD dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    21. B4xC3: Image:CD dot.pngImage:CD 3.pngImage:CD_downbranch-00.pngImage:CD 3.pngImage:CD dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    22. B4xG3: Image:CD dot.pngImage:CD 3.pngImage:CD_downbranch-00.pngImage:CD 3.pngImage:CD dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    23. A4xD2pxA1: [3,3,3] x [p] x [ ] Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW 2.pngImage:CDW dot.pngImage:CDW p.pngImage:CDW dot.pngImage:CDW 2.pngImage:CDW dot.png
    24. C4xD2pxA1: [4,3,3] x [p] x [ ] Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW 2.pngImage:CDW dot.pngImage:CDW p.pngImage:CDW dot.pngImage:CDW 2.pngImage:CDW dot.png
    25. F4xD2pxA1: [3,4,3] x [p] x [ ] Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW 2.pngImage:CDW dot.pngImage:CDW p.pngImage:CDW dot.pngImage:CDW 2.pngImage:CDW dot.png
    26. G4xD2pxA1: [5,3,3] x [p] x [ ] Image:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW 2.pngImage:CDW dot.pngImage:CDW p.pngImage:CDW dot.pngImage:CDW 2.pngImage:CDW dot.png
    27. B4xD2pxA1: Image:CD dot.pngImage:CD 3.pngImage:CD_downbranch-00.pngImage:CD 3.pngImage:CD dot.pngImage:CDW 2.pngImage:CDW dot.pngImage:CDW p.pngImage:CDW dot.pngImage:CDW 2.pngImage:CDW dot.png
    28. A3xA3xA1: [3,3] x [3,3] x [ ] Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.png
    29. A3xC3xA1: [3,3] x [4,3] x [ ] Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.png
    30. A3xG3xA1: [3,3] x [5,3] x [ ] Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.png
    31. C3xC3xA1: [4,3] x [4,3] x [ ] Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.png
    32. C3xG3xA1: [4,3] x [5,3] x [ ] Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.png
    33. G3xA3xA1: [5,3] x [5,3] x [ ] Image:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.png
    34. A3xD2pxD2q: [3,3] x [p] x [q] Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_p.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_q.pngImage:CDW_dot.png
    35. C3xD2pxD2q: [4,3] x [p] x [q] Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_p.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_q.pngImage:CDW_dot.png
    36. G3xD2pxD2q: [5,3] x [p] x [q] Image:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_p.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_q.pngImage:CDW_dot.png
    37. D2pxD2qxD2rA1: [p] x [q] x [r] x [ ] Image:CDW_dot.pngImage:CDW_p.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_q.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_r.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.png

[edit] See also

[edit] References

  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • A. Boole Stott: Geometrical deduction of semiregular from regular polytopes and space fillings, Verhandelingen of the Koninklijke academy van Wetenschappen width unit Amsterdam, Eerste Sectie 11,1, Amsterdam, 1910
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, M.S. Longuet-Higgins und J.C.P. Miller: Uniform Polyhedra, Philosophical Transactions of the Royal Society of London, Londne, 1954
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966

[edit] External links

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu