Antiaromaticity
From Wikipedia, the free encyclopedia
Antiaromatic or pseudoaromatic molecules are cyclic systems containing alternating single and double bonds, where the pi electron energy of antiaromatic compounds is higher than that of its open-chain counterpart. Therefore antiaromatic compounds are unstable and highly reactive; often antiaromatic compounds distort themselves out of planarity to resolve this instability. Antiaromatic compounds usually fail the Hückel's rule of aromaticity.
Examples of antiaromatic systems are cyclobutadiene (A), the cyclopentadienyl cation (B) and the cyclopropenyl anion (C). Cyclooctatetraene is a 4n system but neither aromatic or antiaromatic because the molecules escapes a planar geometry.
By adding or removing an electron pair via a redox reaction, a π system can become aromatic and therefore more stable than the original non- or anti-aromatic compound, for instance the cyclooctatetraenide dianion. The IUPAC criteria for antiaromaticity are as follows:[1]
- The molecule must have 4n π electrons where n is any integer.
- The molecule must be cyclic.
- The molecule must have a conjugated pi electron system.
- The molecule must be planar.
However, most chemists agree on the definition based on empirical (or simulated) energetic observations.[citation needed]
It is observed that the energy difference between aromatic and antiaromatic compounds diminishes with increasing size [2]. For instance the 12-pi system diphenylene is an antiaromatic compound but stable and even commercially available. The low energy penalty for antiaromaticity is also demonstrated a certain pyrazine - dihydropyrazine pair:
The compound on the left is an 14 electron aromat (NICS value -26.1 ppm) which can be reduced in a strongly exothermic reaction to the 16 electron antiaromatic compound (NICS +27.7 ppm) on the right [3]. The dihydropyrazine slowly converts back to the pyrazine under the action of oxygen. It shows that other electron factors can overpower of aromaticity.
[edit] References
- ^ Compendium of Chemical Terminology, antiaromatic compounds, accessed 1 Feb 2007.
- ^ A Thiadiazole-Fused N,N-Dihydroquinoxaline: Antiaromatic but Isolable Shaobin Miao, Paul v. R. Schleyer, Judy I. Wu, Kenneth I. Hardcastle, and Uwe H. F. Bunz Org. Lett.; 2007; 9(6) pp 1073 - 1076; (Letter) DOI:10.1021/ol070013i
- ^ Reducing agent: Sodium hypophosphite, tips stands for triisopropylsilyl