Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Blur derivative - Wikipedia, the free encyclopedia

Blur derivative

From Wikipedia, the free encyclopedia

Many continuous wavelets are derived from a probability density (e.g. Sombrero). This approach also sets up a link among probability densities, wavelets and ‘’blur derivatives’’. To begin with, let P(.) be a probability density, P\in \mathbb{C}^{\infty }, the space of complex signals f:\mathbb{R}\rightarrow \mathbb{C} infinitely differentiable.

A blurred signal can be derived from f(.) by using the probability density P(.) according to:

\tilde{f}(t)=\int^{+\infty}_{-\infty} f(\tau) \cdot P({\tau- t})d \tau,

The classical derivative

\frac{\partial^n}{\partial t^n}\tilde{f}(t)

of the blurred version \tilde{f}(t) is referred to as the blur derivative of f(.) through the density P(.).

[edit] Blur derivative and wavelets

If

\lim {}_{t\rightarrow \infty} \frac{d^{n-1}P(t)}{dt^{n-1}}=0

then

\psi(t)= (-1)^n \frac{d^n P(t)}{dt^n} is a wavelet engendered by P(.).

Given a mother wavelet ψ that holds the admissibility condition then the continuous wavelet transform is defined by

CWT(a,b) = \int^{+\infty}_{-\infty} f(t) \cdot \frac{1}{\sqrt{|a|}}\psi(\frac{t- b}{a})dt, \forall a \in \mathbb{R}-\{0\}, b\in \mathbb{R}.

Continuous wavelets have often unbounded support, such as Morlet wavelet, Meyer, Mathieu wavelet, de Oliveira wavelet.

In the case where the wavelet was generated from a probability density, one has

\frac{1}{\sqrt{|a|}}\psi_n(\frac{t-b}{a})=(-1)^n \frac{1}{\sqrt{|a|}}\frac{\partial^n P(\frac{t-b}{a})}{\partial t^n}.

Now

\frac{\partial^n P(\frac{t-b}{a})}{\partial b^n}= (-1)^n \frac{1}{a^n} P^{(n)}(\frac{t-b}{a}),

so that

CWT(a,b)=\frac{1}{\sqrt{|a|}} \int^{+\infty}_{-\infty} f(t) \cdot \frac{\partial^n P(\frac{t- b}{a})}{\partial b^n}dt.

If the order of the integral and derivative can be permuted, it follows that

CWT(a,b)= \frac{1}{\sqrt{|a|}} \frac{\partial^n }{\partial b^n}\int^{+\infty}_{-\infty} f(t) \cdot P(\frac{t- b}{a})dt.

Defining the LPFed signal as theblur signal

\tilde{f}(a,b)=\int^{+\infty}_{-\infty} f(t) \cdot \frac{1}{\sqrt{|a|}}P(\frac{t- b}{a})dt=\int^{+\infty}_{-\infty} f(t) \cdot P_{a,b}(t)dt,

an interesting interpretation can be made: set a scale a and take the average (smoothed) version of the original signal - the blur version \tilde{f}(a,b). The blur derivative

\frac{\partial^n}{\partial b^n}\tilde{f}(a,b)

is the nth derivative regarding the shift b of the blur signal at the scale a.

The blur derivative coincide with the wavelet transform CWT(a,b) at the corresponding scale. Details (high-frequency) are provided by the derivative of the low-pass (blur) version of the original signal.

Many continuous wavelets can be derived by this approach.

[edit] References

  • [1] G. Kaiser, A Friendly Guide to Wavelets, Boston: Birkhauser, 1994.
  • [2] H.M. de Oliveira, G.A.A. Araújo, Compactly Supported One-cyclic Wavelets Derived from Beta Distributions, Journal of Communication and Information Systems, (former Journal of the Brazilian Telecommunications Society), vol.20, n.3, pp.27-33, 2005.
  • [3] M.M.S. Lira, H. M. de Oliveira and R.J.S. Cintra, Elliptic-Cylinder Wavelets: The Mathieu Wavelets, IEEE Signal Process. Letters, vol. 11, n.1, Jan., pp. 52 - 55, 2004.
  • [4] H.M. de Oliveira, L.R. Soares and T.H. Falk, A Family of Wavelets and a New Orthogonal Multiresolution Analysis Based on the Nyquist Criterion, J. of the Brazilian Telecomm. Soc., Special issue, vol. 18, N.1, pp. 69-76, Jun., 2003.
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu