Carl Gustav Jacob Jacobi
From Wikipedia, the free encyclopedia
Carl Gustav Jacob Jacobi |
|
Born | December 10, 1804 Potsdam, Germany |
---|---|
Died | February 18, 1851 Berlin, Germany |
Residence | Germany |
Nationality | German |
Field | Mathematician |
Institution | Königsberg University |
Alma mater | University of Berlin |
Academic advisor | Enno Dirksen |
Notable students | Paul Albert Gordan Otto Hesse |
Known for | Jacobian |
Religion | Christian |
He was a convert from Judaism, but this may have been for the purposes of securing a job in the dogmatic Christian climate of the time. |
Carl Gustav Jacob Jacobi (December 10, 1804 - February 18, 1851) was a German-born mathematician, widely considered as the most inspiring teacher of his time (Bell, p. 330). By many he was one of the greatest algorists and mathematicians of all time [1][2].
Contents |
[edit] Biography
He was born of Jewish parentage in Potsdam. He studied at Berlin University, where he obtained the degree of Doctor of Philosophy in 1825, his thesis being an analytical discussion of the theory of fractions. In 1827 he became extraordinary and in 1829 ordinary professor of mathematics at Königsberg University, and this chair he filled until 1842. Jacobi suffered a breakdown from overwork in 1843. He then visited Italy for a few months to regain his health. On his return he moved to Berlin, where he lived as a royal pensioner until his death. Jacobi is buried at a cemetery in the Kreuzberg section of Berlin, the Friedhof II der Jerusalems- und Neuen Kirchengemeinde (61 Baruther Street). His grave is close to that Johann Encke, the astronomer.
Jacobi wrote the classic treatise (1829) on elliptic functions, of great importance in mathematical physics, because of the need to "integrate second order kinetic energy equations". The motion equations in rotational form are integrable only for the three cases of the pendulum, the symmetric top in a gravitational field, and a freely spinning body, wherein solutions are in terms of elliptic functions. See Jacobi's elliptic functions.
Jacobi was also the first mathematician to apply elliptic functions to number theory, for example, proving the 2 square and four-square theorems of Pierre de Fermat. He also proved similar results for 6 and 8 squares. The Jacobi theta functions, so frequently applied in the study of hypergeometric series, were named in his honor.
He proved the functional equation for the theta function.
He proved the Jacobi triple product formula and many other results in q-series.
He gave new proofs of quadratic reciprocity, made contributions to higher reciprocity laws, investigated continued fractions and invented Jacobi sums.
In 1841 he reintroduced the partial derivative ∂ notation of Legendre, which was to become standard.
His investigations in elliptic functions, the theory of which he established upon quite a new basis, and more particularly his development of the theta function, as given in his great treatise Fundamenta nova theoriae functionum ellipticarum (1829), and in later papers in Crelle's Journal, constitute his grandest analytical discoveries. Second in importance only to these are his researches in differential equations, notably the theory of the last multiplier, which is fully treated in his Vorlesungen über Dynamik, edited by Alfred Clebsch (1866).
It was in analytical development that Jacobi’s peculiar power mainly lay, and he made many important contributions of this kind to other departments of mathematics, as a glance at the long list of papers that were published by him in Crelle’s Journal and elsewhere from 1826 onwards will sufficiently indicate. He was one of the early founders of the theory of determinants; in particular, he invented the functional determinant formed of the n2 differential coefficients of n given functions of n independent variables, which now bears his name (Jacobian), and which has played an important part in many analytical investigations.
In his 1835 paper, Jacobi proved the following:
- If a univariate single-value function is periodic, then the ratio of the periods cannot be a real number, and that such a function cannot have more than two periods.
Jacobi reduced the general quintic equation to the form,
- x5 − 10q2x = p.
Valuable also are his papers on Abelian transcendents, and his investigations in the theory of numbers, in which latter department he mainly supplements the labours of K. F. Gauss.
The planetary theory and other particular dynamical problems likewise occupied his attention from time to time. While contributing to celestial mechanics, Jacobi (1836) introduced the Jacobi integral for a sidereal coordinate system.
He left a vast store of manuscripts, portions of which have been published at intervals in Crelle's Journal. His other works include Comnienlatio de transformatione integralis duplicis indefiniti in formam simpliciorem (1832), Canon arithmeticus (1839), and Opuscula mathematica (1846–1857). His Gesammelte Werke (1881–1891) were published by the Berlin Academy. Perhaps his most publicized work is Hamilton-Jacobi theory in rational mechanics.
Students of vector theory often encounter the Jacobi identity, those studying differential equations often encounter the Jacobian determinant, and those working in number theory and cryptography use the Jacobi symbol.
Jacobi crater, on the Moon, is named after him.
[edit] See also
- Jacobian
- Jacobi identity
- Jacobi's formula
- Jacobi symbol
- Jacobi integral
- Jacobi polynomials
- Carathéodory-Jacobi-Lie theorem
- Jacobi method
[edit] References
- Temple Bell, Eric (1937). Men of Mathematics. New York: Simon and Schuster.
- Hestenes, David (1986). New Foundations of Classical Mechanics. Dordrecht: Kluwer Adademic Publishers.
- This article incorporates text from the Encyclopædia Britannica Eleventh Edition, a publication now in the public domain.
[edit] External links
- O'Connor, John J., and Edmund F. Robertson. "Carl Gustav Jacob Jacobi". MacTutor History of Mathematics archive.
- Carl Gustav Jacob Jacobi
Persondata | |
---|---|
NAME | Jacobi, Carl |
ALTERNATIVE NAMES | |
SHORT DESCRIPTION | Mathematician |
DATE OF BIRTH | December 10, 1804 |
PLACE OF BIRTH | Potsdam, Germany |
DATE OF DEATH | February 18, 1851 |
PLACE OF DEATH | Berlin, Germany |