Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Coxeter–Dynkin diagram - Wikipedia, the free encyclopedia

Coxeter–Dynkin diagram

From Wikipedia, the free encyclopedia

Coxeter groups in the plane with equivalent diagrams. Domain mirrors are labeled as edge m1, m2, etc. Vertices are colored by their reflection order. The prismatic group [W2xW2] is shown as a doubling of the R3, but can also be created as rectangular domains from doubling the V3 triangles. The P3 is a doubling of the V3 triangle.
Coxeter groups in the plane with equivalent diagrams. Domain mirrors are labeled as edge m1, m2, etc. Vertices are colored by their reflection order. The prismatic group [W2xW2] is shown as a doubling of the R3, but can also be created as rectangular domains from doubling the V3 triangles. The P3 is a doubling of the V3 triangle.
Coxeter groups in the sphere with equivalent diagrams. One fundmantal domain is outlined in yellow. Vertices are colored by their reflection order.
Coxeter groups in the sphere with equivalent diagrams. One fundmantal domain is outlined in yellow. Vertices are colored by their reflection order.
Coxeter groups in 3-space with diagrams. Mirrors (triangle faces) are labeled by opposite vertex 0..3. Edges are colored by their reflection order.R4 fills 1/24 of the cube. S4 fills 1/12 of the cube. P4 fills 1/6 of the cube.
Coxeter groups in 3-space with diagrams. Mirrors (triangle faces) are labeled by opposite vertex 0..3. Edges are colored by their reflection order.
R4 fills 1/24 of the cube. S4 fills 1/12 of the cube. P4 fills 1/6 of the cube.

In geometry, a Coxeter–Dynkin diagram is a graph representing a relational set of mirror (or reflectional hyperplanes) in space for a kaleidoscopic construction.

As a graph itself, the diagram represents Coxeter groups, each graph node represents a mirror (domain facet) and each graph edge represents the dihedral angle order between two mirrors (on a domain ridge).

In addition the graphs have rings (circles) around nodes for active mirrors representing a specific uniform polytope.

The diagram is borrowed from the Dynkin diagram.

Contents

[edit] Description

The diagram can also represent polytopes by adding rings (circles) around nodes. Every diagram needs at least one active node to represent a polytope.

The rings express information on whether a generating point is on or off the mirror. Specifically a mirror is active (creates reflections) only when points are off the mirror, so adding a ring means a point is off the mirror and creates a reflection.

Edges are labeled with an integer n (or sometimes more generally a rational number p/q) representing a dihedral angle of 180/n. If an edge is unlabeled, it is assumed to be 3. If n=2 the angle is 90 degrees and the mirrors have no interaction, and the edge can be omitted. Two parallel mirrors can be marked with "∞".

In principle, n mirrors can be represented by a complete graph in which all n*(n-1)/2 edges are drawn. In practice interesting configurations of mirrors will include a number of right angles, and the corresponding edges can be omitted.

Polytopes and tessellations can be generating using these mirrors and a single generator point. Mirror images create new points as reflections. Edges can be created between points and a mirror image. Faces can be constructed by cycles of edges created, etc.

[edit] Examples

  • A single node represents a single mirror. This is called group A1. If ringed this creates a digon or edge perpendicular to the mirror, represented as {} or {2}.
  • Two unattached nodes represent two perpendicular mirrors. If both nodes are ringed, a rectangle can be created, or a square if the point is equal distance from both mirrors.
  • Two nodes attached by an order-n edge can creates an n-gon if the point is on one mirror, and a 2n-gon if the point is off both mirrors. This forms the D2n group.
  • Two parallel mirrors can represent an infinite polygon D2 group, also called W2.
  • Three mirrors in a triangle form images seen in a traditional kaleidoscope and be represented by 3 nodes connected in a triangle. Repeating examples will have edges labeled as (3 3 3), (2 4 4), (2 3 6), although the last two can be drawn in a line with the 2 edge ignored. These will generate uniform tilings.
  • Three mirrors can generate uniform polyhedrons, including rational numbers is the set of Schwarz triangles.
  • Three mirrors with one perpendicular to the other two can form the uniform prisms.

In general all regular n-polytopes, represented by Schläfli symbol symbol {p,q,r,...} can have their fundamental domains represented by a set of n mirrors and a related in a Coxeter-Dynkin diagram in a line of nodes and edges labeled by p,q,r...

[edit] Finite Coxeter groups

Families of convex uniform polytopes are defined by Coxeter groups.

Notes:

  • Three different symbols are given for the same groups - as a letter/number, as a bracketed set of numbers, and as the Coxeter diagram.
  • The bifurcated Bn groups are also given an h[] notation representing the fact it is half or alternated version of the regular Cn groups.
  • The bifurcated Bn and En groups are also labeled by a superscript form [3a,b,c] where a,b,c are the number of segments in each of the 3 branches.
n A1+ B4+ C2+ D2p E6-8 F4 G2-4
1 A1=[]
Image:CDW_dot.png
           
2 A2=[3]
Image:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png
  C2=[4]
Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.png
D2p=[p]

Image:CDW_dot.pngImage:CDW_p.pngImage:CDW_dot.png

    G2=[5]
Image:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.png
3 A3=[32]

Image:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png

B3=A3=[30,1,1]

Image:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.png

C3=[4,3]
Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png
      G3=[5,3]
Image:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png
4 A4=[33]

Image:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png

B4=h[4,3,3]=[31,1,1]

Image:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.png

C4=[4,32]

Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png

  E4=A4=[30,2,1]

Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.png

F4=[3,4,3]
Image:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png
G4=[5,3,3]
Image:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png
5 A5=[34]

Image:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png

B5=h[4,33]=[32,1,1]

Image:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png

C5=[4,33]

Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png

  E5=B5=[31,2,1]

Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.png

   
6 A6=[35]

Image:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png

B6=h[4,34]=[33,1,1]

Image:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png

C6=[4,34]

Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png

  E6=[32,2,1]

Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png

   
7 A7=[36]

Image:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png

B7=h[4,35]=[34,1,1]

Image:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png

C7=[4,35]

Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png

  E7=[33,2,1]

Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png

   
8 A8=[37]

Image:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png

B8=h[4,36]=[35,1,1]

Image:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png

C8=[4,36]

Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png

  E8=[34,2,1]

Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png

   
9 A9=[38]

Image:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png

B9=h[4,37]=[36,1,1]

Image:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png

C9=[4,37]

Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png

       
10+ .. .. ..

Note: (Alternate names as Simple Lie groups also given)

  1. An forms the simplex polytope family. (Same An)
  2. Bn is the family of demihypercubes, beginning at n=4 with the 16-cell, and n=5 with the penteract. (Also named Dn)
  3. Cn forms the hypercube polytope family. (Same Cn)
  4. D2n forms the regular polygons. (Also named I1n)
  5. E6,E7,E8 are the generators of the Gosset Semiregular polytopes (Same E6,E7,E8)
  6. F4 is the 24-cell polychoron family. (Same F4)
  7. G3 is the dodecahedron/icosahedron polyhedron family. (Also named H3)
  8. G4 is the 120-cell/600-cell polychoron family. (Also named H4)

[edit] Infinite Coxeter groups

Families of convex uniform tessellations are defined by Coxeter groups.

Notes:

  • Regular (linear) groups can be given with an equivalent bracket notation.
  • The Sn group can also be labeled by a h[] notation as a half of the regular one.
  • The Qn group can also be labeled by a q[] notation as a quarter of the regular one.
  • The bifurcated Tn groups are also labeled by a superscript form [3a,b,c] where a,b,c are the number of segments in each of the 3 branches.
n P3+ Q5+ R3+ S4+ T7-9 U5 V3 W2
2               W2=[∞]
Image:CDW dot.pngImage:CDW infin.pngImage:CDW dot.png
3 P3=h[6,3]
Image:CD righttriangle-000.png
  R3=[4,4]
Image:CDW dot.pngImage:CDW 4.pngImage:CDW dot.pngImage:CDW 4.pngImage:CDW dot.png
      V3=[6,3]
Image:CDW dot.pngImage:CDW 6.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.png
 
4 P4=q[4,3,4]
Image:CD downbranch-00.pngImage:CD downbranch-33.pngImage:CD downbranch-00.png
  R4=[4,3,4]
Image:CDW dot.pngImage:CDW 4.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 4.pngImage:CDW dot.png
S4=h[4,3,4]
Image:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD 4.pngImage:CD dot.png
       
5 P5
Image:CD downbranch-00.pngImage:CD downbranch-33.pngImage:CD righttriangleopen 000.png
Q5=q[4,32,4]

Image:CD leftbranch-00.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD dot.png

R5=[4,32,4]

Image:CDW dot.pngImage:CDW 4.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 4.pngImage:CDW dot.png

S5=h[4,32,4]

Image:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 4.pngImage:CD dot.png

  U5=[3,4,3,3]
Image:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 4.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.png
   
6 P6
Image:CD downbranch-00.pngImage:CD downbranch-33.pngImage:CD downbranch-open.pngImage:CD downbranch-33.pngImage:CD downbranch-00.png
Q6=q[4,33,4]

Image:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD dot.png

R6=[4,33,4]

Image:CDW dot.pngImage:CDW 4.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 4.pngImage:CDW dot.png

S6=h[4,33,4]

Image:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 4.pngImage:CD dot.png

       
7 P7
Image:CD downbranch-00.pngImage:CD downbranch-33.pngImage:CD downbranch-open.pngImage:CD downbranch-33.pngImage:CD righttriangleopen 000.png
Q7=q[4,34,4]

Image:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD dot.png

R7=[4,34,4]

Image:CDW dot.pngImage:CDW 4.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 4.pngImage:CDW dot.png

S7=h[4,34,4]

Image:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 4.pngImage:CD dot.png

T7=[32,2,2]

Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD downbranch-33.pngImage:CD downbranch-open.pngImage:CD 3b.pngImage:CD dot.png

     
8 P8
Image:CD downbranch-00.pngImage:CD downbranch-33.pngImage:CD downbranch-open.pngImage:CD downbranch-33.pngImage:CD downbranch-open.pngImage:CD downbranch-33.pngImage:CD downbranch-00.png
Q8=q[4,35,4]

Image:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD dot.png

R8=[4,35,4]

Image:CDW dot.pngImage:CDW 4.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 4.pngImage:CDW dot.png

S8=h[4,35,4]

Image:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 4.pngImage:CD dot.png

T8=[33,3,1]

Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png

     
9 P9
Image:CD downbranch-00.pngImage:CD downbranch-33.pngImage:CD downbranch-open.pngImage:CD downbranch-33.pngImage:CD downbranch-open.pngImage:CD downbranch-33.pngImage:CD righttriangleopen 000.png
Q9=q[4,36,4]

Image:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD dot.png

R9=[4,36,4]

Image:CDW dot.pngImage:CDW 4.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 4.pngImage:CDW dot.png

S9=h[4,36,4]

Image:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 4.pngImage:CD dot.png

T9=[35,2,1]

Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png

     
10 P10
Image:CD downbranch-00.pngImage:CD downbranch-33.pngImage:CD downbranch-open.pngImage:CD downbranch-33.pngImage:CD downbranch-open.pngImage:CD downbranch-33.pngImage:CD downbranch-open.pngImage:CD downbranch-33.pngImage:CD downbranch-00.png
Q10=q[4,37,4]

Image:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD dot.png

R10=[4,37,4]

Image:CDW dot.pngImage:CDW 4.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 3b.pngImage:CDW dot.pngImage:CDW 4.pngImage:CDW dot.png

S10=h[4,37,4]

Image:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 4.pngImage:CD dot.png

       
11 ... ... ... ...        

Note: (Alternate names as Simple Lie groups also given)

  1. Pn is a cyclic group. (Also named ~An-1)
  2. Qn (Also named ~Dn-1)
  3. Rn forms the hypercube {4,3,....} regular tessellation family. (Also named ~Bn-1)
  4. Sn forms the alternated hypercubic tessellation family. (Also named ~Cn-1)
  5. T7,T8,T9 are Gosset tessellations. (Also named ~E6,~E7,~E7)
  6. U5 is the 24-cell {3,4,3,3} regular tessellation. (Also named ~F4)
  7. V3 is the Hexagonal tiling. (Also named ~H2)
  8. W2 is two parallel mirrors. (Also named ~I1)

[edit] See also

[edit] References

  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 17) Coxeter, The Evolution of Coxeter-Dynkin diagrams, [Nieuw Archief voor Wiskunde 9 (1991) 233-248]
  • Coxeter The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, ISBN 978-0-486-40919-1 (Chapter 3: Wythoff's Construction for Uniform Polytopes)
  • Coxeter Regular Polytopes (1963), Macmillian Company
    • Regular Polytopes, Third edition, (1973), Dover edition, ISBN 0-486-61480-8 (Chapter 5: The Kaleidoscope, and Section 11.3 Representation by graphs)

[edit] External links

In other languages
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu