Crossed module
From Wikipedia, the free encyclopedia
In mathematics, and especially in homotopy theory, a crossed module consists of groups G and H, where G acts on H (which we will write on the left), and a homomorphism of groups
that is equivariant with respect to the conjugation action of G on itself:
and also satisfies the so-called Peiffer identity:
[edit] Examples
Let N be a normal subgroup of a group G. Then, the inclusion
is a crossed module with the conjugation action of G on N.
For any group G, modules over the group ring are crossed G-modules with d = 0.
For any group H, the homomorphism from H to Aut(H) sending any element of H to the corresponding inner automorphism can be given the structure of a crossed module.
Given any central extension of groups
the onto homomorphism
together with the action of G on H defines a crossed module. Thus, central extensions can be seen as special crossed modules.
If (X,A,x) is a pointed pair of topological spaces, then the homotopy boundary
from the second relative homotopy group to the fundamental group, may be given the structure of crossed module.
The previous result can also be phrased as: if
is a pointed fibration of spaces, then the induced map of fundamental groups
may be given the structure of crossed module. This example is useful in algebraic K-theory.
These examples suggest that crossed modules may be thought of a "2-dimensional groups". In fact, this idea can be made precise using category theory. It can be shown that a crossed module is essentially the same as a categorical group or 2-group: that is, a group object in the category of categories, or equivalently a category object in the category of groups. While this may sound intimidating, it simply means that the concept of crossed module is a somewhat disguised version of the result of blending the concepts of "group" and "category".
[edit] External links
- J. Baez and A. Lauda, Higher-dimensional algebra V: 2-groups
- R. Brown, Groupoids and crossed objects in algebraic topology
- R. Brown, Higher dimensional group theory
- M. Forrester-Barker, Group objects and internal categories
- Behrang Noohi, Notes on 2-groupoids, 2-groups and crossed-modules