Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Cubic honeycomb - Wikipedia, the free encyclopedia

Cubic honeycomb

From Wikipedia, the free encyclopedia

Cubic honeycomb
Type Regular honeycomb
Schläfli symbol {4,3,4}
t0,3{4,3,4}
{4,4} x {∞}
{∞} x {∞} x {∞}
Coxeter-Dynkin diagram Image:CDW_ring.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.png
Image:CDW_ring.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_ring.png
Image:CDW_ring.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.png
Image:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.png
Image:CD_dot.pngImage:CD_3b.pngImage:CD_downbranch-00.pngImage:CD_3b.pngImage:CD_4.pngImage:CD_ring.png
Cell type {4,3}
Face type {4}
Vertex figure 8 {4,3}
(octahedron)
Cells/edge {4,3}4
Faces/edge 44
Cells/vertex {4,3}8
Faces/vertex 412
Edges/vertex 6
Euler characteristic 0
Symmetry group group [4,3,4]
Dual self-dual
Properties vertex-transitive
Vertex figure: octahedron
Vertex figure: octahedron
edge framework
edge framework

The cubic honeycomb is the only regular space-filling tessellation (or honeycomb) in Euclidean 3-space. It is an analog of the square tiling of the plane.

It is one of 28 uniform honeycombs using regular and semiregular polyhedral cells.

Four cubes exist on each edge, and 8 cubes around each vertex. It is a self-dual tessellation.

It is related to the regular tesseract which exists in 4-space with 3 cubes on each edge.

Contents

[edit] Uniform colorings

There is a large number of uniform colorings, derived from different symmetries. Some of the reflective symmetries include:

Coxeter-Dynkin diagram Partial
honeycomb
Colors by letters
Image:CDW_ring.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.png 1: aaaa/aaaa
Image:CDW_ring.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_ring.pngImage:CDW_infin.pngImage:CDW_ring.png 2: aaaa/bbbb
Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_ring.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.png 2: abba/abba
Image:CD_dot.pngImage:CD_3b.pngImage:CD_downbranch-00.pngImage:CD_3b.pngImage:CD_4.pngImage:CD_ring.png 2: abba/baab
Image:CDW_ring.pngImage:CDW_4.pngImage:CDW_ring.pngImage:CDW_4.pngImage:CDW_ring.pngImage:CDW_2.pngImage:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.png 4: abcd/abcd
Image:CDW_ring.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_ring.png 4: abbcbccd
Image:CDW_ring.pngImage:CDW_infin.pngImage:CDW_ring.pngImage:CDW_2.pngImage:CDW_ring.pngImage:CDW_infin.pngImage:CDW_ring.pngImage:CDW_2.pngImage:CDW_ring.pngImage:CDW_infin.pngImage:CDW_ring.png
Image:CDW_ring.pngImage:CDW_4.pngImage:CDW_ring.pngImage:CDW_4.pngImage:CDW_ring.pngImage:CDW_2.pngImage:CDW_ring.pngImage:CDW_infin.pngImage:CDW_ring.png
Image:CDW_ring.pngImage:CDW_4.pngImage:CDW_ring.pngImage:CDW_3.pngImage:CDW_ring.pngImage:CDW_4.pngImage:CDW_ring.png
8: abcd/efgh

[edit] Related tessellations

[edit] Hypercube tessellations

The cubic honeycomb is part of a dimensional family of regular honeycombs with the Schläfli symbols {4,3...3,4}, constructed from 4 n-hypercubes per ridge. The vertex figure for every honeycomb is a cross-polytope {3...3,4}.

These are also named as - δn for an (n-1)-dimensional honeycomb.

  1. Apeirogon {∞} - δ2 - Image:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.png
  2. Square tiling {4,4} - δ3 - four squares/vertex. Image:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.png = Image:CDW_ring.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.png
  3. Cubic honeycomb {4,3,4} - δ4 - four cubes/edge. Image:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.png = Image:CDW_ring.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.png
  4. Tesseractic tetracomb {4,3,3,4} - δ5 - four tesseracts/face. Image:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.png = Image:CDW_ring.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.png
  5. Penteractic pentacomb {4,3,3,3,4} - δ6 - four penteracts/cell. Image:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.png = Image:CDW_ring.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.png
  6. ...

[edit] Alternated hypercube tessellations

A second infinite family is based on an alternation of the regular family, given a Schläfli symbols h{4,3...3,4} representing the regular form with half the vertices removed. The hypercube facets become demihypercubes, and the deleted vertices create new cross-polytope facets. The vertex figure for honeycombs of this family are rectified hypercubes.

These are also named as - hδn for an (n-1)-dimensional honeycomb.

  1. Alternated square tiling - hδ3 - h{4,4} - square faces alternate into edges, deleted vertices become new squares. (Same as regular square tiling {4,4})
    • Image:CDW_hole.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.png ( = Image:CDW_ring.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.png )
  2. Alternated cubic honeycomb - hδ4 - h{4,3,4} - Cube cells alternate into tetrahedra, deleted vertices become octahedra.
    • Image:CDW_hole.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.png = Image:CD_ring.pngImage:CD_3b.pngImage:CD_downbranch-00.pngImage:CD_3b.pngImage:CD_4.pngImage:CD_dot.png
  3. Alternated tesseractic tetracomb or demitesseractic tetracomb- hδ5 - h{4,3,3,4} - Tesseracts alternate into 16-cells and deleted vertices also become 16-cells. (Same as regular {3,3,4,3})
    • Image:CDW_hole.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.png = Image:CD_ring.pngImage:CD_3.pngImage:CD_downbranch-00.pngImage:CD_3.pngImage:CD_dot.pngImage:CD_4.pngImage:CD_dot.png ( = Image:CDW_ring.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png as a regular honeycomb)
  4. Demipenteractic pentacomb - hδ6 - h{4,3,3,3,4} - penteract alternate into demipenteracts and deleted vertices form pentacrosses.
    • Image:CDW_hole.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.png = Image:CD_ring.pngImage:CD_3.pngImage:CD_downbranch-00.pngImage:CD_3.pngImage:CD_dot.pngImage:CD_3.pngImage:CD_dot.pngImage:CD_4.pngImage:CD_dot.png
  5. ...

[edit] See also

[edit] References

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu