Uspořádání
Z Wikipedie, otevřené encyklopedie
Uspořádání (přesněji neostré částečné uspořádání) je matematický pojem z teorie uspořádání. Je to binární reflexivní, slabě antisymetrická a tranzitivní relace, tj. relace, pro kterou platí následující podmínky:
- reflexivita (každý prvek je v relaci R sám se sebou)
- tranzitivita (pokud je prvek množiny v uspořádání mezi jinými dvěma prvky, jsou tyto dva rovněž srovnatelné)
- slabá antisymetrie (neexistují cykly v uspořádání)
[editovat] Příklad
Relace ≤ je uspořádání na přirozených, celých, racionálních, reálných i komplexních číslech.
Relace ("být podmnožinou") je uspořádání na třídě všech množin (na univerzální třídě).
[editovat] Podívejte se také na
![]() |
Související články obsahuje: |