New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Diskussion:Konvergenzradius - Wikipedia

Diskussion:Konvergenzradius

aus Wikipedia, der freien Enzyklopädie

Inhaltsverzeichnis

[Bearbeiten] "In vielen Fällen..."

In welchen?--Gunther 00:09, 3. Apr 2005 (CEST)

[Bearbeiten] "Beweis"

Toll wäre es, wenn man auch den Beweis dazu hätte...

Würde Dir ein kargen Verweis auf die geometrische Reihe genügen?--Gunther 14:57, 12. Jan 2006 (CET)
naja, ich fänds schon cool, wenn es ein wenig ausführlicher wäre. Denn wenn, du nur einen kleinen Verweis auf die geometrische
Reihe machst, weiß ja keiner was damit anzufangen, oder?
Ich weiß nicht, ist die folgende Heuristik nicht irgendwie naheliegend?
  • r\approx1/\sqrt[n]{a_n}
  • a_n(x-x_0)^n\approx\Big(\frac{x-x_0}r\Big)^n=q^n
  • \sum q^n=\begin{cases}\mathrm{konvergent}&|q|<1\\\mathrm{meistens\ beschr\ddot ankt}&|q|=1\\\mathrm{unbeschr\ddot ankt}&|q|>1\end{cases}
Natürlich ist das kein Beweis, aber man kann einen draus machen. Allerdings kann man das so nicht in den Artikel schreiben. Und ein richtiger ε-δ-Beweis ist halt nervig und unübersichtlich, das wäre eher etwas für das b:Beweisarchiv.--Gunther 15:19, 12. Jan 2006 (CET)
Ja, da hast du Recht. Das sollte wohl so reichen.

Der Beweis folgt direkt aus dem Wurzelkriterium. Demnach ist die Reihe konvergent, wenn

\limsup{\sqrt[n]{|a_n\,(x-x_0)^n|}} < 1, das heißt wenn
|x-x_0| < \frac{1}{\limsup{\sqrt[n]{|a_n|}}}.

Divergent entsprechend für | xx0 | > r. --Drizzd 18:55, 14. Feb 2006 (CET)

Das ist zwar formal richtig, erklärt aber nichts. Man kann übrigens genausogut das Wurzelkriterium als den Spezialfall x = x0 + 1 der fraglichen Aussage betrachten.--Gunther 19:06, 14. Feb 2006 (CET)
Es ist der Beweis, dass obige Formel genau den Konvergenzradius (nach dessen Definition) ergibt. Der Beweis des Wurzelkriteriums ist Voraussetzung, aber nicht umgekehrt. Dieses wird über das Majorantenkriterium und Eigenschaften der geometrischen Reihe bewiesen. --Drizzd 20:51, 14. Feb 2006 (CET)
Man kann genausogut die Formel für den Konvergenzradius direkt aus der geometrischen Reihe beweisen und dann als Spezialfall das Wurzelkriterium daraus herleiten. Spontan würde ich auch das Wurzelkriterium für weniger wichtig halten.--Gunther 21:24, 14. Feb 2006 (CET)

[Bearbeiten] Bezeichner für komplexe Zahlen

In der Funktionentheorie werden komplexe Zahlen üblicherweise mit z bezeichnet, während x und y oft für reelle Zahlen stehen. Wäre es nicht angebracht, x überall durch z zu ersetzen?

[Bearbeiten] Fehler im Artikel?

Ich bin mir nicht sicher genug die Änderungen selbst durchzuführen, deshalb frage ich erstmal hier nach: Fehlt unter dem \limsup nicht ein n \to \infty? Und bei den drei Beispielen bin ich mehr ziemlich sicher, dass es statt | x | = 1 eher | x | < 1 heißen müsste. 82.135.79.246 17:38, 30. Jul 2006 (CEST)

Das n\to\infty finde ich entbehrlich; wenn Du es vermisst, dann füg' es ein. Und zu | x | = 1: das ist genau so gemeint, es geht gerade um das Verhalten auf dem Rand des Konvergenzbereiches.--Gunther 17:43, 30. Jul 2006 (CEST)
Danke für den Hinweis. Und was das | x | = 1 betrifft: Nochmaliges Lesen half... 82.135.79.246 18:24, 30. Jul 2006 (CEST)


Die Aussage für das letzte Beispiel machte keinen sinn. habs rausgenommen. wenn jemand eine lösung hat bitte posten.

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu