Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Paritätsbit - Wikipedia

Paritätsbit

aus Wikipedia, der freien Enzyklopädie

Inhaltsverzeichnis

[Bearbeiten] Paritätskontrolle (parity check)

Die Paritätskontrolle dient der Erkennung fehlerhaft übertragener Informationsworte. Als Informationswort wird hier eine Folge von Bits bezeichnet. Die Paritätskontrollcodierung hängt dem Informationswort ein Paritätskontrollbit (N=1 d.h. die Anzahl der Kontrollbits ist 1), auch Paritybit, genannt an. Das Ergebnis, welches um n+1 Stellen länger ist als das Informationswort, wird hier Codewort genannt. Die Methode der Fehlererkennung mittels Paritätsbits heißt Paritätsprüfung. Da nicht bekannt ist, wo innerhalb des Codewortes der Fehler aufgetreten ist, ist keine Fehlerkorrektur möglich. Außerdem ist bei einem Paritätsbit N=1 nur eine ungerade Anzahl von Bitfehlern in einem Codewort feststellbar. Eine gerade Anzahl von Bitfehlern wird nicht festgestellt.

Für die Fehlerkorrektur gibt es Weiterentwicklungen wie das unten dargestellte mehrdimensionale Parityverfahren, den Hamming-Code oder das Fehlerkorrekturverfahren.

[Bearbeiten] Erzeugung N Paritätsbits

Beim Sender werden alle Bits eines Datenblocks (hier Informationswort) modulo N addiert. Entsprechend lassen sich bis zu N Bitfehler erkennen. Für N=1 wird die Summe der Einsen (Paritätssumme) im Informationswort berechnet. Ist diese Summe gerade wird bei Even-Parity das Paritätsbit zu Null. Entsprechend ergibt eine ungerade Summe des Informationswortes das Paritätsbit Eins (Odd-Parity).

Beispiel 1 (Even-Parity):

  • Ist für die Datenübertragung Even-Parity (Paritätssumme gerade -> Paritybit: 0, Paritätssumme ungerade -> Paritybit: 1) festgelegt, so gilt für die beiden nachfolgenden Beispiele:
  • Das Informationswort 0011.1010 hat vier Einsen. Vier ist eine gerade Zahl, das Paritätskontrollbit ist also die Null, und das resultierende Codewort ist 0011.1010 0.
  • Das Informationswort 1010.0100 hat hingegen eine ungerade Paritätssumme und wird in das Codewort 1010.0100 1 codiert.

Beispiel 2 (Odd-Parity):

  • Ist für die Datenübertragung Odd-Parity (Paritätssumme gerade -> Paritybit: 1, Paritätssumme ungerade -> Paritybit: 0) festgelegt, so gilt für die beiden nachfolgenden Beispiele:
  • Das Informationswort 0011.1010 hat vier Einsen. Vier ist eine gerade Zahl, das Paritätskontrollbit ist also die Eins, und das resultierende Codewort ist 0011.1010 1.
  • Das Informationswort 1010.0100 hat hingegen eine ungerade Paritätssumme und wird in das Codewort 1010.0100 0 codiert.

Bild:Parity.jpg

[Bearbeiten] Empfang des Codewortes mit N Paritätsbits

Der Empfänger addiert die Bits des empfangenen Codewortes ebenfalls und überprüft, ob er denselben Code berechnet hat. N ist spezifisch für das jeweilige Datenübertragungsverfahren. Wenn N = 1, dann besteht der Parity-Check-Code aus genau einem Paritätsbit, bei N = 2 aus 2 Paritätsbit, etc.

Bei der asynchronen Datenübertragung über eine serielle RS232-Schnittstelle ist die Blockgröße gewöhnlich 8 Bit und N = 1. Sollte ein Bit verfälscht werden (eine Null in eine Eins oder eine Eins in eine Null), so ist die Paritätssumme des resultierenden Codewortes ungerade, und der Dekodierer erkennt, dass es zu einem Fehler gekommen ist. Es ist aber für den Dekodierer nicht möglich, den Fehler zu korrigieren, da nicht bekannt ist, welches Bit verfälscht wurde. Der Dekoder erkennt also maximal einen Fehler und kann maximal Null Fehler korrigieren, denn falls mehr als ein Bit verfälscht wurde, so ist es eventuell gar nicht möglich, den Fehler zu erkennen, da die Paritätssumme dann auch gerade sein kann. Man sagt, der Paritätskontrollcode sei 1-fehlererkennend und 0-fehlerkorrigierend.

[Bearbeiten] Anwendungsbereich

Paritätsbits finden u.a. in der DFÜ, Netzwerktechnik und bei Speichermodulen Verwendung.

Die ursprüngliche Form der ASCII-Zeichentabelle besteht aus 128 Zeichen, jedes Zeichen ist durch eine Folge von sieben Bits eindeutig festgelegt. Da ein Rechner acht Bits zu einem Byte zusammenfasst, wird dieses achte Bit gerne verwendet, um ein Paritätskontrollbit anzuhängen.

[Bearbeiten] Gerade und ungerade Parität

Unterschieden wird zwischen zwei Paritätsprotokollen: even (gerade) und odd (ungerade). In beiden Fällen wird die Anzahl der Einsen innerhalb des zugeordneten Worts ermittelt. Ist die Parität "even" (gerade) eingestellt, so wird das Paritätsbit gesetzt, falls eine ungerade Anzahl Datenbits im Zeichen gesetzt ist. Im Falle "odd" (ungerade) wird das Bit gesetzt, falls eine gerade Anzahl Datenbits innerhalb des Zeichens gesetzt ist. Mit "gerade" oder "ungerade" ist also die Anzahl gesetzter Datenbits inklusive des Paritätsbits gemeint.

Beispiel:
Im Beispiel soll eine ungerade ("Odd")Parität hergestellt werden:

"Wort" Paritätsbit
0100.1110 1 Das "Wort" enthält bereits vier Einsen, das Paritätsbit wird gesetzt, um ein ungerades Codewort (fünf Einsen) herzustellen.
1011.0110 0 Die Parität ist mit fünf Einsen schon ungerade, das Paritätsbit wird nicht gesetzt.
0100.0000 1 Das gesamte Codewort hat hier zwei Einsen obwohl die Anzahl ungerade sein sollte. Ein Fehler ist aufgetreten. Entweder wurde das Paritätsbit falsch berechnet, oder das "Wort" wurde falsch übertragen.

Ist das Paritätsbit immer 1, dann spricht man von einer Mark-Parität (es enthält keine Information); ist es immer 0, spricht man von Space-Parität (es stellt einen Leerraum dar).

Jedem Datenbyte wird ein zusätzliches Bit angehängt.

[Bearbeiten] Mehrdimensionale Paritätskontrolle

Als Erweiterung der oben dargestellten, eindimensionalen Paritätskontrolle lässt sich auch ein zwei-, bzw. höherdimensionales Paritätsverfahren erstellen, welches als Erweiterung nicht nur bestimmte Fehler erkennen kann sondern auch bestimmte Fehlerkombinationen korrigieren kann. Die Paritätskontrolle wird damit zu einem fehlererkennenden und fehlerkorrigierenden Verfahren.

Die Konstruktion soll anhand einer einfachen zweidimensionalen Paritätskontrolle für acht Bit lange Datenworte dargestellt werden:

  • Es werden acht Nutzdatenworte zu acht Bit Länge (ein Byte) in einem Quadrat (Array) zusammengefasst. Es umfasst somit jede Zeile und jede Spalte genau acht Bit.
  • Zu jeder Zeile wird nach dem Verfahren wie oben dargestellt ein Paritätsbit berechnet und als neuntes Datenbit jeder Zeile nachgestellt.
  • Zu jeder Spalte wird nach dem Verfahren wie oben dargestellt ein Paritätsbit berechnet und als neunte Zeile angeschrieben.

Das so entstande Array umfasst neun mal neun Datenbits und kann geeignet, beispielsweise seriell übertragen werden. Auf Empfängerseite wird der Datenblock zu neun Datenworten empfangen und als Array abgebildet. Tritt nun an einer bestimmten Stelle ein einzelner Bitfehler auf, so ist die Parität genau der betreffenden Zeile und Spalte fehlerhaft. Somit kann das fehlerhafte Bit eindeutig lokalisiert werden und durch Invertierung in den richtigen Zustand umgewandelt werden.

Mit diesem Verfahren sind alle einzelnen Bitfehler pro Block eindeutig erkennbar und korrigierbar. Treten mehrere Bitfehler in einem Block auf, ist die Fehlerkorrektur nicht mehr in allen Fällen möglich. Allerdings sind fehlerhafte Blöcke unter Umständen noch als fehlerhaft erkennbar, was bei diesen Verfahren beispielsweise alle zweifachen Bitfehler pro Block umfasst.

[Bearbeiten] Weblinks

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu