New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Diskussion:Planck-Einheiten Archiv 2004 und 2005 - Wikipedia

Diskussion:Planck-Einheiten Archiv 2004 und 2005

aus Wikipedia, der freien Enzyklopädie

Dies ist das Archiv der Diskussion:Planck-Einheiten der Jahre 2004 und 2005.

Inhaltsverzeichnis

[Bearbeiten] Planck-Einheiten

Habe das, was ich unter "Planck-Länge" ergänzt und unter "Planck-Zeit" und "Planck-Masse" neu geschrieben habe, unter dem neuen Artikel "Planck-Einheiten" zusammengefaßt, damit nicht alles doppelt und dreifach erscheint (hatte vergessen mich anzumelden und erscheine daher erst später namentlich in der Versionsliste). Damit haben wir das in der deutschen Version strukturell identisch wie in der englischen, wo es unter "natural units" zusammengefasst ist. Unter "Natürliche Einheiten" versteht man aber im deutschsprachigen Bereich offenbar etwas anderes. Zumindest geht das aus dem Artikel Einheitensystem hervor. Das sollte man vielleicht noch klären. Den Abschnitt "Geschichte" habe ich aus dem erwähnten englischen Artikel übernommen, bis auf einen Satz, den ich nicht ganz verstanden habe.

Der Verweis auf Burkhard Heim stammt noch aus dem den alten Artikel zur Plack-Zeit. Habe ihn mal dringelassen, obwohl ich mir nicht so ganz sicher bin, ob er hier an der richtigen Stelle steht oder besser zu Quantengravitation gehört. Das könnte vielleicht sokrat entscheiden, der ihn ins Spiel gebracht hat.

wolfgangbeyer, 11.01.04


  • Die Zusammenfassung mag ja strukturell Sinn machen, eine noch im (alten) Plank-Zeit-Artikel auch für Laien nachvollziehbare Faszination Die Planck-Zeit beschreibt den kleinstmöglichen Zeitraum, für die die bekannten Gesetze der Physik anwendbar sind. Man muss davon ausgehen, dass bei kleineren Zeitintervallen die Zeit ihre uns vertrauten Eigenschaften als Kontinuum verliert. ... ganz am Anfang des Artikels ist nun (dadurch) leider ziemlich versteckt ... schade eigentlich ... Hafenbar 17:50, 12. Jan 2004 (CET)
Das stimmt eigentlich. Finde auch, das der Laie möglichst ganz oben was griffiges sehen sollte. Habe die Einleitung entsprechend umgestellt. So gefällt es mir auch besser. wolfgangbeyer, 13.01.04

Der Abschnitt "Geschichte" kann m.E. nicht ganz richtig sein. Planck stellte die Strahlungsformel nicht 1890 sondern im Oktober 1900 auf und begründete sie im Dezember an der Preussischen Akademie d. Wissenschaften. Er stellt meines Wissens auch nicht "diese Einheiten" in der Publikation von 1899 vor, sondern eine Theorie der Strahlung. Zu den Planck-Einheiten kommt man erst mit Hilfe der Relativitätstheorie, also ganz sicher nicht vor 1905. Leider fehlen mir im Moment die genauen Informationen, um den Abschnitt zu korrigieren. Hubi 11:11, 16. Jan 2004 (CET)

Es muss natürlich 1900 statt 1890 heißen - Versehen meinerseits bei der Übersetzung des Geschichts-Abschnitts des Artikel "Natural Units" der englischen Wikipedia, den ich weitgehend wörtlich übersetzt habe und die meine einzige Quelle dazu war. Die Planck-Einheiten konnte man durchaus schon vor der Relativitätstheorie definieren, denn G und c, die zu ihr gehören, waren ja schon vorher bekannt. Es war also genau ab 1899 möglich, als die letzte der 3 Konstanten nämlich h entdeckt wurde. Als genialer Kopf hat er damals schon erkannt, dass man mit diesen 3 Konstanten ein Einheitensystem definieren kann, das irgendwie eine universelle Bedeutung haben müsste, obwohl er damals evtl. kaum eine Vorstellung davon gehabt haben könnte, welche denn. Bei einer Google-Suche nach "planck units 1899" findet man viele Artikel die das bestätigen z. B. "The socalled Planck units are not based on a physical theory, and neither are they themselves base for a physical theory. They are 'constructed' purely ad hoc by a dimension analysis, based on Newton's gravitational constant, the velocity of light and Planck's constant. The intention of Max Planck was – in 1899 – to find a unit of length, a unit of time and a unit of temperature, independent of specific local systems and the existence of man. Reference: Max Planck: 'Über irreversible Strahlungsvorgänge'. Sitzungsberichte der Preußischen Akademie der Wissenschaften, vol. 5, p. 479 (1899).". Ich könnte mir vorstellen, dass er in dieser Veröffentlichung über seine Strahlungstheorie diese Möglichkeit, universelle Einheiten zu definieren, mehr oder weniger nebenbei erwähnt hat. Wolfgangbeyer 23:45, 17. Jan 2004 (CET)
Sehr interessant, vielen Dank Hubi 08:01, 18. Jan 2004 (CET)

Ich finde den Geschichte-Absatz unglücklich. Es wird die Geschichte der Entdeckung des Wirkungsquantums, aber nicht die der Plank-Einheiten beschrieben. Passt hier nicht herein, und sollte entfernt werden. -- Schewek 15:09, 16. Jan 2004 (CET)

Das würde ich nicht so sehen, denn die Entdeckung von h machte die Definition der Planck-Einheiten ja gerade möglich und hatte sie dank Plancks genialer Weitsicht historisch ja auch unmittelbar zur Folge und zwar über eine simple Dimensionsbetrachtung, die ich ganz wesentlich finde und auf die ich daher auch im Artikel eingehe. Siehe dazu die Disskusion vor dieser hier. Die Geschichte dieser Einheiten und die der Endeckung von h sind also quasi identisch - zumindest untrennbar miteinander verknüpft. Einer der Gründe dafür, warum ich beschloss, diese Passage als einige der wenigen aus dem englischen Wikipedia-Artikel "Natural Units" zu übernehmen, war nicht zuletzt das nette Zitat Plancks, mit dem er damals auf die Bedeutung dieser frisch entdeckten Einheiten hinweist mit seinen verstaubtem Deutsch von damals, aber inhaltlich den Nagel voll auf den Kopf treffend. Wolfgangbeyer 23:45, 17. Jan 2004 (CET)
Ok. -- Schewek 15:18, 13. Feb 2004 (CET)

[Bearbeiten] Hypothese <-> Theorie

Erster Absatz. Wenn nach einer Theorie gesucht wird, kann es sich bei der Quanten"theorie" doch nur um eine Hypothese handeln. Hab's verändert. Wenn's nicht passt, sollte aber entsprechend darauf eingegangen werden. -- lg Robodoc 07:37, 13. Feb 2004 (CET)

Hallo Robodoc. Deine 3 Änderungen verfälschen leider den Sinn des gesagten bzw. zu sagenden:
1. "da man davon ausgehen muss" statt "Man muss davon ausgehen": Die Grenze der Gültigkeit der bekannten Gesetze folgt nicht aus der Annahme, dass Raum und Zeit ihre Eigenschaften als Kontinuum verlieren, sondern es ist umgekehrt: Die gleichzeitige Anwendung von Quanten- und Relativitätstheorie führt zu Aussagen bzw. Phänomenen, die zeigen, dass diese Theorien, so wie sie heute formuliert sind, unvollständig bis widersprüchlich sind. Daraus resultiert die Annahme bzw. Hypothese, dass Raum und Zeit selbst sich dort anders verhalten, als wir es gewohnt sind.
2. "entsprechend dieser Hypothese": Aus dem gleichen Grund folgt auch aus dieser Hypothese nicht, dass ein Objekt, das kleiner ist als die Planck-Länge, kollabiert, so wie es die jetzige Formulierung nahe legt, sondern das folgt einfach aus der konsequenten Anwendung der Gesetze von Quanten- und Relativitätstheorie, in der derzeit bekannten Form.
3. "bezüglich der Quantengravitation" statt "in der Quantengravitation": Ich wollte sagen, dass es auf dem Gebiet der Quantengravitation diese Interpretation üblich ist. Was "bezüglich der Quantengravitation" sprachlich bedeuten soll ist mir nicht ganz klar. Habe es durch "auf dem Gebiet" ersetzt, was wohl besser verständlich ist.
Bin mir nicht ganz sicher, ob ich Deinen Satz "Wenn nach einer Theorie gesucht wird, kann es sich bei der Quanten"theorie" doch nur um eine Hypothese handeln" richtig verstanden habe. Aber so wie es jetzt im Artikel steht, kann man es nicht stehen lassen. Würde dafür plädieren, die ursprüngliche Form wieder herzustellen. Wolfgangbeyer 10:40, 13. Feb 2004 (CET)
4. "lediglich abzuleiten" statt " als die lediglich abgeleiteten" (hab's erst jetzt entdeckt. War auch noch falsch geschrieben): Da fand ich aber die vorherige Formulierung sprachlich deutlich eleganter. War fast ein wenig stolz auf meine raffinierte Formulierung ;-). Jetzt klingt's eher platt. Würde auch die hier dafür plädieren, die ürsprünglich Form wieder herzustellen - Sorry Robodoc, dass ich so auf Dir herumhacke ;-). Wolfgangbeyer
5. Auch Deine Änderung im letzten Satz der Einleitung kann ich nicht als Verbesserung empfinden (habe ich erst jetzt entdeckt). Aber ich gebe Dir insofern recht, als die alte Formulierung nicht optimal war. Wie findest Du die jetzige Version?
Bisher kein Kommentar? Habe daher die alte Version erst mal weitgehend wieder hergestellt. -- Wolfgangbeyer 09:55, 14. Feb 2004 (CET)
Doch, von mir! (SteffenB) ;-) Und zwar zu Pkt 4.:
Bei der Formulierung " als die lediglich abgeleiteten" handelt es sich meiner Meinung um eine sprachliche Extravaganz, derer dieser Artikel ob seiner bereits inhaltlichen Extravaganz garnicht bedarf. Zwar halte ich die Formulierung für durchaus gelungen, da sie das Wesentliche kompakt korrekt rüberbringt. Andererseits leidet die Versändlichkiet etwas, so daß (neu: dass - bääh) ich es für vertretbar halte zugunste des einfacheren Verständnisses, auf das lediglich zu verzichten. Die Klassifizierung als abgeleitete (Größen) impliziert ja quasi bereits eine Wertung der Art: lediglich. --SteffenB 20:47, 7. Mär 2004 (CET)
Also "als die abgeleiteten" statt " als die lediglich abgeleiteten"? Geht klar. Haupsache nicht "lediglich abzuleiten". -- Wolfgangbeyer 00:11, 8. Mär 2004 (CET)

[Bearbeiten] Planck-Fläche

In Theorien/Hypothesen wie Quantengravitation, Stringtheorie spielt die Planck-Fläche eine wichtige (in gewisser Weise elementare) Rolle (Holographisches Prinzip, Entropie schwarzer Löcher). Kann oder sollte man das hier auch erwähnen? -- Schewek 15:18, 13. Feb 2004 (CET)

Habe mal eine Satz mit Verweisen dazu eingefügt. Mehr würde vielleicht den Rahmen dieses Artikels sprengen. Aber man könnte sich ja in einem noch zu schreibenden Artikel Holographisches Prinzip austoben ;-) -- Wolfgangbeyer 16:25, 13. Feb 2004 (CET)

[Bearbeiten] Planck-Energie

Auf Anregung von Herrn Thiesing habe ich die Planck-Energie nachgerechnet und es kommt bei mir eine anderer Wert heraus : E-Planck = m-Planck * Co * Co = 1887385875.3473 Joule = 1,8 * 10hoch 9 wenn Co = Lichtgeschwindigkeit im Vakuum Benutzer:rhome

[Bearbeiten] Raum und Zeit diskret?

Frage an die Experten: Kann man sagen, dass Raum und Zeit diskret (also nicht kontinuierlich) sind? Leben wir also genau genommen in einer "digitalen" (nicht analogen) Welt? --Neitram 14:55, 20. Aug 2004 (CEST)

Darüber gibt es z. Zt nur Spekulationen. Fest steht nur, dass die Zeit jenseits der Planck-Zeit strukturell völlig anders sein muss. Wie, ist völlig offen. Anschaulich vorstellbar wird es wohl kaum sein. Eine einfache Quantisierung in gleichabständigen Stufen wäre sicher viel zu simpel. Eine andere findest Du unter Loop-Quantengravitation. --Wolfgangbeyer 15:54, 20. Aug 2004 (CEST)

[Bearbeiten] "Die Grenzen naturwissenschaftlicher Erkenntnis"

Ich habe Probleme mit dem Absatz über die "Grenzen naturwissenschaftlicher Erkenntnis". Er weckt den Eindruck, die Planck-Einheiten würde sich dem Experiment grundsätzlich und für immer entziehen und wären eine Grenze der Erkenntnis im philosophischen Sinn.

Sicherlich ist ein Beschleuniger in der Größe des Sonnensystems heute Science Fiction - aber es sind schon viele Science Fiction wahr geworden. Mir ist dazu leider keine gute Formulierung eingefallen.

So steht's eigentlich nicht dort. Sondern es ist von "Indiz" die Rede, und der entscheidende (letzte) Satz steht im Konjunktiv. Ich finde, das kann man durchaus so formulieren, und es steht ja auch nicht im Widerspruch dazu, dass es auf irgendeinem anderen Weg (ohne Beschleuniger) vielleicht eines Tages doch geht. --Wolfgangbeyer 11:56, 12. Sep 2004 (CEST)
Ich habe den Artikel grade gelesen und mir erschien es auch so als ob mit den grenzen der erkenntnis die philosophischen grenzen gemeint waren. ich finde man sollte die formulierung eindeutiger machen --myukew 11:15, 18. Jun 2005 (CEST)
Zusätzlich zu oben gesagtem finde ich, dass der Satz "Diese Überlegung markiert eine bedeutende Grenze für die derzeit absehbaren Möglichkeiten der Experimentalphysik." eindeutig sagt, um was es geht, habe aber sicherheitshalber noch ein Wörtchen im Text eingefügt. --Wolfgangbeyer 18:59, 18. Jun 2005 (CEST)

[Bearbeiten] Planck-Masse

Der CODATA 2002 wert für die Planck-Masse ist 2.17645(16) * 10-8 kg oder 1.22090(9)*10+19 GeV/c+2. Gerundet ist das 2.2 und nicht 2.1 *10-8 kg. Die Angabe der Unsicherheit fehlt, die Angabe der Masse in Einheiten Gev/c+2 wäre konsequent.

danke, Pediadeep

Habe mal genauere Zahlen reingesetzt. Die Planck-Masse sollte man nicht auch noch in GeV/c² angeben, da diejenigen, die damit überhaupt etwas anfangen können, bei der Planck-Energie in GeV fündig werden, wo ja der selbe Zahlenwert auftaucht. --Wolfgangbeyer 23:41, 29. Mär 2005 (CEST)

[Bearbeiten] Natürliche Einheiten

Hallo,

der Artikel erstaunt mich etwas. Ich verstehe unter Natuerlichen- bzw. Planck-Einheiten ein Einheitensystem, in dem c=hquer=G==1 gilt. Das wird in dem Artikel nicht deutlich. Der Satz Es ist durchaus angemessen und auf dem Gebiet der Quantengravitation auch üblich, die Planck-Einheiten selbst als die fundamentalen Naturkonstanten zu interpretieren und G, c und h als die abgeleiteten. ist totaler Bloedsinn, zumindest hab ich noch nie davon gehoert und ich arbeite auf dem Gebiet.

Ich komme drauf, weil ich gerade ganz naiv den Artikel Natürliche Einheiten angelegt habe, weil es den noch nicht gab... Der ist so natuerlich zu kurz, beschreibt aber zumindest was ein Physiker unter dem Begriff versteht.

Vielleicht sollte man das irgendwie verbinden?

Gruesse, --Florian G. 19:19, 13. Mai 2005 (CEST)

PS: Ich wundere mich sehr, dass dies ein exzellenter Artikel sein soll. Ich wuerde ihn eher mit {{Überarbeiten}} kennzeichnen...

Hallo Florian,
  1. Der Artikel entstand ursprünglich durch Zusammenlegen separater Artikel für Planck-Länge, Planck-Masse und Planck-Zeit und deckt daher in seinem Text vor allem diese Begriffe ab. Zwar steht in der Einleitung ausdrücklich "Die Planck-Einheiten bilden ein natürliches System von Einheiten für Länge, Zeit und Masse,...", aber das mag tatsächlich etwas knapp sein. Vielleicht kann man dazu einen Abschnitt z. B. hinter den Definitionen formulieren. Sind die Planck-Einheiten eigentlich wirklich identisch mit den natürlichen Einheiten? Diese Frage hatte ich hier ganz oben als allererste schon vor einem Jahr gestellt, bisher ohne Antwort. Mir sind natürliche Einheiten immer nur als c=1 und hquer=1 und ohne G begegnet.
  2. Ich finde die Formulierung c=hquer=G=1 in einem Wikipedia-Artikel ohne Erläuterung bedenklich. Der interessierte Laie, für den wir hier ja schreiben, verfällt da schon ganz schön ins Grübeln. Für ihn klingt das so, als würde man sagen, in SI-Einheiten gelte für das Urmeter L=1 und das Urkilogramm M=1 also L=M. Das bringt er mit seinem Wissen über Größen und Einheiten nur schwer zur Deckung. Das müsste man dann schon klarzustellen.
  3. Im Artikel werden c, G und hquer als die grundlegensten Naturkonstanten bezeichnet. Aber das sind sie ja nicht per se sondern historisch bedingt. Wäre man aus irgendwelchen experimentellen Gründen zuerst auf die Naturkonstanten Planck-Energie, Planck-Fläche und Planck-Dichte gestoßen, dann hätten diese diese Rolle übernommen und c, G und hquer würden als abgeleitete gelten. Wenn man also die Frage nach den fundamentalen Naturkonstanten stellt, dann ist die ohne eine gewisse Willkür natürlich nicht zu beantworten, aber ich denke, da die Grundeinheiten des Maßsystems, mit dem wir nun mal rechnen, Länge, Zeit und Masse sind, liegt es auf der Hand, der Planck-Länge, Planck-Zeit und Planck-Masse selbst diese Rolle zuweisen. Darauf wollte ich den Leser hinweisen. Darüber mag man sich als Physiker, der mit diesen Einheiten praktisch umgeht, vielleicht wenig Gedanken machen, aber mit etwas Abstand finde ich, ist an dieser Interpretation eigentlich kaum was auszusetzen. Dass es keine "fundamentaleren" Naturkonstanten gibt, wird ja wohl kaum jemand bestreiten.
Sicher kann man an diesem Artikel noch nachbessern. Da wir nur 4 exzellente Physikartikel (eigentlich sind es nur 3) haben, sollten wir uns aber bemühen, dass es nicht noch einer weniger wird ;-). --Wolfgangbeyer 22:08, 13. Mai 2005 (CEST)
Hallo Wolfgang,
Vielen Dank für die ausführliche Antwort. Vielleicht als allererstes zu 3., da gebe ich Dir nämlich völlig recht, das habe ich nur aus dem Artikeltext nicht richtig verstanden. Als Urdefinition fuer Masse,Laenge und Zeit sind das natürlich schon die Planck-Einheiten. Zu 2., da gebe ich Dir auch recht - meine Kurzdefinition unter Natürliche Einheiten ist natürlich viel zu knapp und für den Laien unverständlich. Ich würde dafür plädieren das in diesen Artikel einzuarbeiten, vielleicht schon relativ am Anfang, da das die Definition ist mit der man als Physiker rechnet.
Ob Planck-Einheiten und Natürliche Einheiten identisch sind, weiss ich auch nicht so genau. Laut englischer Wikipedia schon, im Studium hatte ich das eigentlich eher so verstanden, dass Natuerliche Einheiten eben c=hquer=1 bedeutet (bzw. zusaetzlich G=1, das aber auch nur wenn man mit ARTlern redet), und mit Planck hab ich bisher immer nur die Konstanten in Verbindung gebracht. Im Sprachgebrauch hab ich bisher auch nur Natürliche Einheiten, bzw. natural units gehört, Planck-Einheiten nie. Hm, da sollte man vielleicht mal einen fragen der sich mit Physik-Geschichte auskennt, wie diese Namensgebungen zustandekamen.
Bei der Anzahl der exzellenten Physikartikel geb ich Dir auch recht, ich möchte hier bestimmt keine Exzellenten entsorgen, nur diesen hier vielleicht ein bisschen verbessern.
Viele Grüße, --Florian G. 13:10, 14. Mai 2005 (CEST)

Ich glaube der fragliche Satz mit den abgeleitetn G soll in etwas sagen, dass die Stärke der Gravitation aus elementaren Einheiten für die Länge folgt und nicht umgekehrt, aber das ist natürlich Metaphysik. --Pjacobi 13:16, 14. Mai 2005 (CEST)

[Bearbeiten] Werte für G, c, und h in der Einleitung

Das ist der Artikel über die Planck-Einheiten und nicht über G, c und h. Es gibt daher keinen Sinn in der Einleitung noch vor dem Inhaltsverzeichnis diese Größen in allen Variationen und inkl. Fehler anzugeben, noch bevor die Planck-Einheiten selbst aufgeführt werden. Außerdem ist die Rolle von G, c und h zu diesem Thema keine grundsätzliche sondern eine historische: Wäre man aus irgendwelchen experimentellen Gründen zuerst auf die Naturkonstanten Planck-Energie, Planck-Fläche und Planck-Dichte gestoßen, dann hätten diese diese Rolle übernommen. Bei einem für Laien doch recht komplexen Thema ist es laut Wikipedia:Wie_schreibe_ich_gute_Artikel#Verständlichkeit die Hauptaufgabe der Einleitung, dem Leser einen Überblick darüber zu verschaffen, worum es geht. Dazu sind diese Zahlenwerte nicht nötig. Wer sie wissen will, findet sie in den entsprechenden Artikeln. Habe sie daher wieder entfernt. --Wolfgangbeyer 23:03, 19. Mai 2005 (CEST)

-Ich habe sie in den Artikel aufgenommen, weil der Artikel ohne sie nicht gut lesbar ist !!! Die Plankeinheiten werden hier im Bezug auf G, c und h angegeben. De facto werden in der Experimentalphysik auch heutzutage kaum Plankeinheiten verwendet, weil sie nicht so genau gemessen werden können wie andere Größen. Insofern ist dies heutzutage immer noch keine nur historische Betrachtungsweise. Wenn der Leser die Plankeinheiten nachvollziehen will, dann muß er sich momentan durch zig Mausklick die nötigen Informationen beschaffen. Ich finde das nicht angemessen. Aber es stimmt, man muß sie nicht in der Einleitung bringen. Aber irgend wo auf der Seite sollten sie schon auftauchen. Noch eine Bemerkung zu den Fehlern: Die Verwendung des Ungefährzeichens ist ja ganz nett, aber ich hätte schon gerne verläßliche Werte mit Fehlerangaben und am besten einer Quelle. Ich hatte die Werte samt Fehler aus Wikipedia übernommen. Aber man sollte sich bestimmt Zeit nehmen und aus den bekannten Experimentellen Fehlern für G, c und h die resultierenden Fehler für die Plankeinheiten bestimmen. Boehm 19:22, 5. Jun 2005 (CEST)

[Bearbeiten] Sinnigkeit der Planck-Masse

Laut Größenordnung (Masse) besitzt eine menschliche Eizelle (4 µg) nur das Fünftel an Masse der Planck-Masse (21 µg) - Die Planck-Masse markiert also für mich nicht eine Grenze für die Gültigkeit der bekannten Gesetze der Physik, wie es in der Einleitung so steht. Vielleicht kann jemand ein Statement dazu geben? Danke, --Abdull 20:44, 28. Jul 2005 (CEST)

Ich stimme Abdull's Wertung zu und vermisse - neben der recht einleuchtenden Behandlung der Bedeutung von Planck-Länge und -Zeit - eine Interpretation der Planck-Masse.
Ich weiß nicht, ob der jüngste Edit von Benutzer:Fredstober zur Planck-Masse eine Reaktion auf dieses Bedürfnis ist, auch zur Planck-Masse irgendwas zu sagen. Ganz glücklich bin ich darüber nicht, denn man kann ja jede Menge solcher Beziehungen auf Anhieb formulieren: So ist z. B. auch die Energie eines Photons zu einer Wellelänge gleich der Planck-Länge bzw. zu einer Frequenz gleich dem Kehrwert der Planck-Zeit gleich dem Energieäquivalent der Planck-Masse (bis auf einen Faktor 2π). Wenn wir dieses eine auswählen, kommt garantiert der nächste Schlauberger und führt alle anderen denkbaren Beziehungen dieser Art auf. Was auch nicht so schön an dieser "Herleitung" im Vergleich zu der davor ist, ist dass man ja eine andere Planck-Einheit hineinstecken muss. Damit ist unklar, warum das überhaupt eine Herleitung der Planck-Masse aus der Planck-Länge sein soll und nicht umgekehrt. Sicher liegt anders als bei Planck-Länge und –Zeit bei der –Masse nicht so auf der Hand, dass da irgend eine Grenze der bekannten Physik vorliegt. Eine Beschreibung des obigen Photons oder irgend eines Elementarteilchens mit einer solchen Masse als Ruhemasse wäre mit der bekannten Physik aber sicher nicht möglich. Ein so schönes und griffiges Argument wie im Fall von Planck-Länge und -Zeit fällt mir aber dazu nicht ein. --Wolfgangbeyer 23:39, 6. Dez 2005 (CET)
Mit der Formel sollte ja nur klar gemacht werden, dass die Planckmasse eine Grenze darstellt, ab der Gravitationseinflüsse im Quantenbereich nicht mehr vernachlässigt werden können, da sie sogar in den Bereich der Ruhemasse der Teilchen kommen. Vor allem wollte ich aber etwas entgegensetzen gegen den Absatz: "Man erhält die Formel für die Planck-Länge und Planck-Masse, indem man r = x setzt und die beiden letzten Gleichungen nach x und m auflöst. Da es sich um eine grobe Abschätzung handelt, kann der Faktor 2 in der Formel für r vernachlässigt werden.".
--Fredstober 01:43, 7. Dez 2005 (CET)
Hallo Fredstober,
  • "Mit der Formel sollte ja nur klar gemacht werden, dass die Planckmasse eine Grenze darstellt, ab der ... " Dann sollten man das besser ans Ende des Abschnitts "Die Planck-Einheiten als Grenze der Gültigkeit der bekannten Physik" setzen. Aber vielleicht müsste man besser herausarbeiten worin denn die Grenze besteht. Eine andere Möglichkeit für eine Grenze könnte übrigens darin bestehen, dass es kein (stabiles?) Elementarteilchen ohne innere Struktur (also punktförmig, bzw. von der Größe der Planck-Länge) größer als die Planck-Masse geben kann, da sonst sein Schwarzschildradius größer als die Planck-Länge wird und damit gewissermaßen real wird. Ein solches Teilchen wäre damit ein schwarzes Loch und würde durch Hawking-Strahlung zerfallen. Die bekannten Gesetze der Physik sehen, soweit ich weiß, keine Obergrenze für die Masse eines Elementarteilchens vor.
  • "Vor allem wollte ich aber etwas entgegensetzen gegen den Absatz: ... " Naja, dein Beispiel enthält ja auch einen willkürlichen Faktor 2, denn du vergleichst die potenzielle Energie willkürlich mit der Masse eines(!) der beiden Teilchens und nicht mit der Gesamtmasse des Systems. Ich finde solche Faktoren eigentlich irrelevant, denn die Definition der Planck-Einheiten enthält ja selbst schon eine Willkür, die darin besteht, dass man sie über h-quer statt h definiert, was immerhin im Ergebnis einen Faktor Wurzel(2π) ausmacht. Es ist ja aber auch sicher nicht so, dass sich ab den Planck-Einheiten schlagartig alles ändert. Das wäre ebenso als würde man sagen, dass man bei Objekten exakt größer als die Wellenlänge des Lichtes Strahlenoptik und bei exakt kleineren Wellenoptik betrieben müsse. --Wolfgangbeyer 01:26, 8. Dez 2005 (CET)
Es ist schon klar, dass die Grenzen der Gültigkeit verschiedener physikalischer Theorien nicht konkret abgesteckt sind. Aussagen über die Unmöglickeit solcher Teilchen möchte ich eher nicht treffen, da uns einfach die Experimente / Theorie für solche Situationen noch fehlt und die Interpolation von Theorien weit über ihre Anwendungsgebiete oft schiefgeht.
Noch zur Herleitung: Der Kritikpunkt wegen der Betrachtung der Gesamtmasse / Masse eines Teilchen ist natürlich richtig. Aber ich finde eine Herleitung, bei der gleich der richtige Wert herauskommt besser, als wenn man erst zwei Näherungen machen muss. (Wobei der Faktor zwei, der am Ende der Herleitung weggenommen wird eigentlich in der Unschärferelation reingesteckt wurde).--Fredstober 20:08, 9. Dez 2005 (CET)
Hm, ich verstehe nicht ganz, wir sind jetzt bei "Die Planck-Einheiten als Grenze der Gültigkeit der bekannten Physik" aber du beginnst mit einem Satz zur Herleitung der Planck-Masse auch noch unter der Voraussetzung, dass wir die Plancklänge schon kennen. Eine solche Herleitung ist ja völlig redundant, denn es gibt ja die viel elegantere über die Dimensionsbetrachtung, die unter "Definition und Zahlenwerte" schon steht. Insofern verstehe ich deine Unzufriedenheit aufgrund eines Zahlenfaktors 2 in diesem Abschnitt nicht, denn er dient ja gar nicht der Herleitung der Planck-Masse sondern eben dem in der Überschrift formulierten Abschnittsthema. "Die Gravitationseinflüsse auf punktförmige Elementarteilchen (z.B. Elektronen oder Quarks) lassen sich im Bereich der Planckmasse also nicht mehr vernachlässigen." Aber eben nur bei Planck-Abständen, und dass wir dort Probleme bekommen, wird im Rest des Abschnitts ja viel überzeugender dargelegt. Die Planck-Masse ist übrigens gerade auch die, deren Compton-Wellenlänge gleich ihrem Schwarzschildradius ist, allerdings auch wieder bis auf einen kleinen Zahlenfaktor. Beide Längen wären dann (evtl. bis auf 2π) gleich der Planck-Länge, die man damit auch gleich hergeleitet hätte D. h. man bräuchte für diese Definition nicht die Kenntnis der Planck-Länge hineinstecken. Leider fällt mir aber von diesem Gesichtspunkt ausgehend auch kein Argument ein, das unser Problem löst. "Vorgänge auf dieser Skala" ist übrigens Physikersprache, die die meisten Laien nicht verstehen. Und " ... punktförmige Elementarteilchen (z.B. Elektronen oder Quarks) ... " ist etwas heikel, wenn wir über Grenzen der Gesetze der Physik sprechen, denn punktförmig sind sie allenfalls hinsichtlich unseres bisherigen Wissens, und in einem Artikel, der (u. a.) die Planck-Länge zum Thema hat, sollten wir "punktförmig" besser ganz vermeiden.. Ich bin mit der jetzigen Form des Textes eher noch unglücklicher als zuvor. Das Problem ist, dass der Abschnitt mehrere Aussagen zugleich treffen will (Herleitung der Planck-Masse, und Grenze der physikalischen Gesetze) aber keins der beiden überzeugend bewältigt. Das erste benötigen wir nicht, und hinsichtlich des zweiten fällt uns nichts überzeugendes ein, das in seiner Aussagekraft den bisherigen Abschnitt sinnvoll ergänzen könnte, anstatt ihn zu verwässern. Vielleicht hat ja noch jemand eine Idee. Klar versagt die bekannte Physik bei Phänomenen, für deren Beschreibung die ART und die QT zugleich erforderlich sind, und die Planck-Masse wird sicher in einer übergeordneten Quantengravitation als fundamentale Konstante eine zentrale Rolle spielen. Insofern "markiert" sie schon eine Grenze für die Gültigkeit der bekannten Physik, was aber sprachlich überhaupt nicht bedeutet, dass das Überschreiten dieses Wertes als Messwert nun unbedingt in jeder Situation auch eine solche Grenzüberschreitung darstellt. Ich sehe daher nicht unbedingt die Notwendigkeit, eine entsprechende Argumentation mit Gewalt einzubauen, die nicht mal überzeugend ist. Wir sollten übrigens bei diesem Artikel vielleicht etwas vorsichtiger editieren, da es einer von leider nur 4 exzellenten Artikel der Physik ist, die wir überhaupt haben. Ich habe daher diesen Abschnitt wieder entfernt. Wir können gerne versuchen, etwas aussagekräftigeres zu finden, aber ich bin eher skeptisch, dass das uns gelingt. --Wolfgangbeyer 00:42, 10. Dez 2005 (CET)
Nach alldem scheint mir der Satz "Die Planck-Einheiten markieren eine Grenze für die Gültigkeit der bekannten Gesetze der Physik" hinsichtlich der Planckmasse verfehlt; wenn Benutzer Abdull (siehe oben) auf seine Balkenwaage ein Gewichtstück von der Masse mp legt, passiert nichts Esoterisches. Falls mp überhaupt irgendeine Grenze markiert, dann hinsichtlich ihres Energieäquivalentes, aber noch nicht einmal das ist im jetzigen Artikel ersichtlich; der Normal-Leser eines wiki-Artikels lebt in der SI-Welt. -192.53.103.105
Da steht ja auch nur "Die Planck-Einheiten markieren(!) eine Grenze für die Gültigkeit(!) der bekannten Gesetze der Physik." Das heißt eigentlich nicht, dass das für jede Form der Überschreitung dieser Grenze gilt. Wie oben in verschiedenen Varianten diskutiert, wird diese Grenze aber dann überschritten, wenn es sich dabei um die Masse eines einzigen Teilchens handelt. Letztlich besagt der obige Satz nicht mal, dass irgendein Messwert überhaupt überschritten werden muss. Die Planck-Einheiten spielen im Rahmen der noch zu entdeckenden Quantengravitation zweifellos eine zentrale Rolle. Ihre noch unbekannten Grundgleichungen enthälten mit Sicherheit auch die Planck-Masse. Das alleine rechtfertigt bereits den obigen Satz. --Wolfgangbeyer 08:41, 8. Dez 2005 (CET)
"Das wäre ebenso als würde man sagen, dass man bei Objekten exakt größer als die Wellenlänge des Lichtes Strahlenoptik und bei exakt kleineren Wellenoptik betrieben müsse."- Das hört sich sehr versöhnlich an. Hingegen liest man in sensationslüsternen Darstellungen der Physik - viel weniger versöhnlich - immer wieder: Eine klitzekleine Zeitspanne nach dem Urknall galten die physikalischen Gesetze noch nicht. Erst seit die Planck-Zeit verstrichen ist, gelten die physikalischen Gesetze. (Das "die" ist auch schon anmaßend, gemeint sind ja die wenigen derzeit bekannten und als gesichert geltenden.) Zurück zum Thema: In der aktuellen Fassung des Artikels ist nicht ersichtlich, welche Grenze die Planck-Masse markiert - und ob sie es tut.--- Könnte man sagen, die von der Planck-Masse markierte Grenze bedeutet, dass man in der Elementarteilchentheorie nicht mehr Gravitationseffkete vernachlässigen darf? Das kommt mir - als Physik-Laie - viel weniger fundamental vor, als dass Raum und Zeit ihre Kontinuums-Eigenschaften verlieren.
Ist mir auch schon aufgefallen, dass in vielen populärwissenschaftlichen Texten zu diesem Punkt unsägliche Formulierungen zu finden sind. Das mit der Grenze ist nicht so ganz leicht zu verstehen. Im Grunde muss man sich dazu mit der Theorienhirarchie in der Physik befassen, die zur ganz oben im Artikel erwähnten Quantengravitation hinführt, die die gesuchte Vereinigung von ART und QT darstellen soll. Im Artikel Korrespondenzprinzip, das grundlegende Konzept der Theorienhierarchie in den Naturwissenschaften darstellt, ist das Verhältnis dieser Theorien zueinander laiengerecht beschrieben. --Wolfgangbeyer 00:42, 10. Dez 2005 (CET)

[Bearbeiten] Schwarze Mini-Löcher

Habe den Link auf die schwarzen Mini-Löcher entfernt, aus mehreren Gründen:

  • Es geht dabei ja um Phänomene, die man in Teilchenbeschleunigern provozieren will. Die dabei möglichen Löcher liegen hinsichtlich ihrer Masse ca. 15 Zehnerpotenzen unter der, die sich bei dem Gedankengang im hiesigen Artikel ergeben würde.
  • Es handelt es sich bei den hiesigen um einen rein rechnerischen Gedankengang, zu dessen Verständnis vor allem die Lektüre von Schwarzes Loch erforderlich ist. Die Lektüre von Schwarzes Mini-Loch trägt dagegen überhaupt nicht zum Verständnis von Planck-Einheiten bei, sondern führt thematisch weg.
  • Die hiesigen Löcher würden "innerhalb" der Planck-Zeit durch Hawkings-Strahlung zerfallen. Da die Plack-Zeit die kürzeste sinnvolle Zeitspanne überhaupt darstellt, erhebt sich die Frage, ob man diesen Löchern überhaupt eine Existenz zuordnen könnte. Es geht wie gesagt nur um das Durchrechnen eines Gedankenganges, der ein Problem aufzeigt. Das ist bei den Mini-Löchern völlig anders.
  • Laut Wikipedia:Wie_schreibe_ich_gute_Artikel#Verständlichkeit soll die Einleitung eines Fachartikels, der Spezialwissen erfordert, eine Zusammenfassung sein, die es dem Laien ermöglichen, den Gegenstand wenigstens vernünftig einzuordnen. Ein Verweis auf Schwarzes Mini-Loch zielt da aber in die völlig falsche Richtung. --Wolfgangbeyer 00:45, 29. Sep 2005 (CEST)

[Bearbeiten] Gliederung und Formulierung

Hallo Boehm, du wirst irgendwie nicht müde, die Nachteile der Planck-Einheiten ausführlich zu betonen. Wir sollten aber in erster Linie uns darauf konzentrieren, wozu sie interessant und nützlich sind. Das, was im Moment über die Nachteile für die Verwendung als Einheitensystem in der Experimentalphysik da steht, reicht völlig. Dein Zusatz hat einen Abschnitt erzeugt, der auch sprachlich nicht besonders gut strukturiert ist. Im Übrigen entstand der Artikel aus einer Zusammenlegung der Artikel für Planck-Länge, -Zeit und -Masse und soll auch diese Themen abdecken und nicht nur die Rolle als Einheitensystem. Insofern müssen wir die Zahlenwerte in SI-Einheiten nicht unbedingt ausschließlich unter ihrem Bezug zum SI aufführen. Der Satz "Für die Planck-Einheiten sind die SI-Einheiten (m, s, kg) prinzipell uninteressant" ist daher abgesehen von seiner sprachliche Fragwürdigkeit nicht angemessen. Im übrigen bitte ich darum, diesen Artikel mit etwas Umsicht zu bearbeiten, denn es ist einer von leider nur 5 exzellenten aus dem Themenbereich Physik ;-). --Wolfgangbeyer 22:35, 23. Okt 2005 (CEST)

Hallo Wolfgangbeyer, es mag zwar sein, dass ich ein paar sparchlich ungeschickte Formulierungen verwendet habe. Ich finde es auch gut, daß Du diese verbesserst. Trotzdem verstehe ich die Überschrift "Definitionen und Zahlenwerte" nicht und halte sie sogar für irreführend. Zahlenwerte machen nur Sinn, wenn man Einheiten verwendet. Nun das wird in diesem Abschnitt getan. Aber nicht in Planck-Einheiten, denn dann wären die Zahlenwerte alle Eins, sondern stillschweigend in SI-Einheiten. Da dies zu grundlegenden Missverständnissen führen kann, habe ich die expliziete Erwähnung im Titel vorgenommen. Vielleich hast Du ja eine Idee, wie man das besser zum Ausdruck bringen kann.
Das prinzipielle Problem der Verwendung der Planck-Einheiten in der Experimentalphysik ist nicht zwangsweise die ungenau bestimmbare Gravitationskonstante, sondern die Größenordnungen der Planck-Einheiten, die weit von den Größenordnungen unserer Alltagswelt entfernt sind und damit schwer messbar sind.
Ich denke nicht, dass ein Artikel exzellent sein kann, wenn man nicht auch ein paar Nachteile aufzählt. Und diese fehlten meiner Meinung nach. Würden mir in diesem Artikel einige Vorteile fehlen, so würde ich ohne zu zögern darauf hinweisen. Boehm 23:32, 23. Okt 2005 (CEST)
Ich habe mal in deinem Sinne noch einen Satz hinzugefügt. Dass bezüglich der SI-Einheiten Missverständnisse auftreten könnten, halte ich eigentlich für eher unwahrscheinlich. Wir könnten auch einfach "Zahlenwerte" streichen und nur "Definitionen" schreiben. Fändest du das besser? --Wolfgangbeyer 00:22, 24. Okt 2005 (CEST)

[Bearbeiten] Lichtgeschwindigkeit als l(p)/t(p)

Hallo Topper81, wenn schon, dann sollte man sagen, dass Licht sich in Planck-Einheiten mit der selben Geschwindigkeit im Raum bewegt, wie in der Zeit. Man sollte das aber hier gar nicht erwähnen, denn das ist eher Thema der RT, wo es durch die übliche Substitution x4=ct genauso ist, und eine vereinfachte Schreibweise erlaubt. Thema der Planck-Einheiten ist aber der Kontakt von RT und QT, und da gibt es keinen Sinn auf Zusammenhänge hinzuweisen, die schon innerhalb der RT gang und gäbe sind. --Wolfgangbeyer 20:47, 4. Nov 2005 (CET)

[Bearbeiten] "entsprechende Theorie"

Zitat, der 4. Satz dieses Atikels lautet: "Die Suche nach einer entsprechenden Theorie der so genannten Quantengravitation gehört zu den größten Herausforderungen der physikalischen Grundlagenforschung." --- Hier ist gar nicht ersichtlich, wem diese Theorie entsprechen soll; worauf bezieht sich "entsprechend" ?

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu