New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Transversalität - Wikipedia

Transversalität

aus Wikipedia, der freien Enzyklopädie

In der Differentialtopologie bezeichnet Transversalität einen Begriff, der die gegenseitige Lage zweier Untermannigfaltigkeiten beschreibt. Transversalität beschreibt in gewissem Sinne das Gegenteil von Tangentialität und stellt den „Normalfall“ (siehe Stabilität) dar.

Inhaltsverzeichnis

[Bearbeiten] Definition

T_{f(x)}Y = T_{f(x)}Z + d_{x}f(T_{x}X) \quad \forall \, x \in f^{-1}(Z)
  • Y sei eine differenzierbare Mannigfaltigkeit, X, Z \subseteq Y seien Untermannigfaltigkeiten. Die Untermannigfaltigkeit X heisst transversal zu Z, falls gilt:
T_{x}Y = T_{x}Z + T_{x}X \quad \forall \, x \in X \cap Z.
Dies ist äquivalent dazu, dass die natürliche Inklusionsabbildung i : X \hookrightarrow Y transversal ist zu Z.

[Bearbeiten] Bemerkungen

  • Die Summe der Vektorräume ist im Allgemeinen keine direkte Summe.
  • Transversalität von Untermannigfaltikeiten ist eine symmetrische Relation: X \mbox{ transversal zu } Z \Longleftrightarrow Z \mbox{ transversal zu } X, man sagt deshalb auch „X und Z schneiden sich transversal“.
  • Zwei disjunkte Untermannigfaltigkeiten schneiden sich immer transversal.

[Bearbeiten] Beispiele

  • f : \mathbb{R} \rightarrow \mathbb{R}^2, \; t \mapsto (t, t^2 + \varepsilon) ist transversal zu \mathbb{R}\times\left\{0\right\} \subset \mathbb{R}^2 genau dann, wenn \varepsilon \neq 0:
    • \varepsilon = 0: Im einzigen Schnittpunkt (0,0) stimmen die Tangentialräume überein, ihre Summe ergibt nicht den ganzen Tangentialraum von \mathbb{R^2}.
    • \varepsilon > 0: Kein Schnittpunkt, also transversal.
    • \varepsilon < 0: In den (beiden) Schnittpunkte ergibt die Summe der Tangentialräume der Untermannigfaltigkeiten den ganzen Tangentialraum.
  • Zwei Geraden in \mathbb{R}^2 schneiden sich genau dann transversal, wenn sie nicht identisch sind.
  • Zwei Geraden in \mathbb{R}^2 schneiden sich genau dann transversal, wenn sie sich nicht schneiden.
  • \mathbb{R}^k \times \left\{0\right\} und \left\{0\right\} \times \mathbb{R}^l in \mathbb{R}^n schneiden sich genau dann transversal, wenn k+l\geq n.

[Bearbeiten] Motivation

Die ursprungliche Motivation für die Definition der Transversalität liegt in der Frage, wann das Urbild einer Untermannigfaltigkeit Z \subseteq Y unter einer differenzierbaren Abbildungen f:X \rightarrow Y wieder eine Untermannigfaltigkeit (von Y) ist. Dies ist genau dann der Fall, wenn f transversal ist zu Z.

Um dies zu zeigen, schreibt man Z lokal als Niveaumenge einer differenzierbaren Abbildung g:V \rightarrow \mathbb{R}^l, \; V \subseteq Y \mbox{ offen}, also Z \cap V = g^{-1}(0). Die zu erfüllende Bedingung lautet nun: 0 ist regulärer Wert von g \circ f:X \rightarrow \mathbb{R}^l, das heisst, die Tangentialabbildung d_{x}(g \circ f) : T_{x}X \rightarrow \mathbb{R}^l ist surjektiv für alle x \in (g \circ f)^{-1}(0). Durch elementare Umformungen zeigt man, dass diese Bedingung äquivalent ist zu T_{f(x)}Y = T_{f(x)}Z + d_{x}f(T_{x}X) \quad \forall \, x \in f^{-1}(Z), was der Definition der Transversalität entspricht.

[Bearbeiten] Stabilität

Eine Eigenschaft einer differenzierbarer Abbildungen X \rightarrow Y heisst stabil, wenn für jede differenzierbare Homotopie F:X \times [0,1] \rightarrow Y gilt: Hat x \mapsto F(x, 0) diese Eigenschaft, dann existiert ein \varepsilon > 0 derart, dass x \mapsto F(x, t) diese Eigenschaft für alle t \in [0,\varepsilon) auch besitzt.

Der Stabilitätssatz besagt, dass für differenzierbare Abbildungen X \rightarrow Y die Transversalität zu einer abgeschlossenen Untermannigfaltigkeit Z \subseteq Y eine stabile Eigenschaft ist, falls X kompakt ist.

[Bearbeiten] Weitere Sätze

Weitere wichtige Sätze diesem Kontext sind der Transversalitätssatz und der Homotopietransversalitätssatz. Sie besagen im Wesentlichen, dass zu jeder differenzierbaren Abbildungen eine homotope Abbildung existiert, welche zu einer vorgegebenen Untermannigfaltigkeit transversal ist und dass transversale Homotopien aus Familien von Abbildungen bestehen, welche für fast alle Parameterwerte transversal sind. Diese Sätze ermöglichen die allgemeine Definition von Schnittzahlen mit Hilfe von Homotopie, da sich diese nur für transversale Schnitte direkt definieren lassen.

[Bearbeiten] Literatur

  • John W. Milnor: Topology from the differentiable viewpoint. Springer, New York 1994, ISBN 0-691-04833-9
  • Victor Guillemin, Alan Pollack: Differential topology. Prentice-Hall, Jersey 1974, ISBN 0-13-212605-2
Andere Sprachen

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu