Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Ext functor - Wikipedia, the free encyclopedia

Ext functor

From Wikipedia, the free encyclopedia

In mathematics, the Ext functors of homological algebra are derived functors of Hom functors. They were first used in algebraic topology, but are common in many areas of mathematics.

Contents

[edit] Definition and computation

More precisely, write \mathcal C = \mathfrak{Mod}(R) for the category of modules over R, a ring. Let B be in \mathcal C and set T(B) = \operatorname{Hom}_{\mathcal C}(A,B), for fixed A in \mathcal C. (This is a left exact functor and thus has right derived functors RnT). To this end, define

\operatorname{Ext}_R^n(A,B)=(R^nT)(B),

i.e., take an injective resolution

J(B)\leftarrow B\leftarrow 0,

compute

\operatorname{Hom}_{\mathcal C}(A,J(B))\leftarrow\operatorname{Hom}_{\mathcal C}(A,B)\leftarrow0,

and take the cohomology of this complex.

Similarily, we can view the functor G(A)=\operatorname{Hom}_{\mathcal C}(A,B) for a fixed module B as a contravariant left exact functor, and thus we also have right derived functors RnG by instead of the injective resolution used above choosing a projective resolution P(B), and proceeding dually by calculating from

P(A)\rightarrow A\rightarrow 0,

compute

\operatorname{Hom}_{\mathcal C}(P(A),B)\leftarrow\operatorname{Hom}_{\mathcal C}(A,B)\leftarrow0,

and then take the cohomology.

These two constructions turn out to yield isomorphic results, and so both may be used for calculation of Ext.

[edit] Properties of Ext

The Ext functor exhibits some convenient properties, that are useful in computations.

  • \operatorname{Ext}^i_{\mathcal C}(A,B)=0 for i > 0 if either B is injective or A is projective.
  • The inverse also holds: if \operatorname{Ext}^1_{\mathcal C}(A,B)=0 for all A, then \operatorname{Ext}^i_{\mathcal C}(A,B)=0 for all 0 and B is injective, and if \operatorname{Ext}^1_{\mathcal C}(A,B)=0 for all B, then \operatorname{Ext}^i_{\mathcal C}(A,B)=0 for all 0 and A is projective.
  • \operatorname{Ext}^n_{\mathcal C}(\bigoplus_\alpha A_\alpha,B)\cong\prod_\alpha\operatorname{Ext}^n_{\mathcal C}(A_\alpha,B)
  • \operatorname{Ext}^n_{\mathcal C}(A,\prod_\beta B_\beta)\cong\prod_\beta\operatorname{Ext}^n_{\mathcal C}(A,B_\beta)

[edit] Ext and extensions

Ext functors take their name from their relationship to extensions. Given R-modules A and B, there is a bijective correspondence between equivalence classes of extensions

0\rightarrow B\rightarrow C\rightarrow A\rightarrow 0

of A by B and elements of

\operatorname{Ext}_R^1(A,B).

Given two extensions

0\rightarrow B\rightarrow C\rightarrow A\rightarrow 0 and
0\rightarrow B\rightarrow C'\rightarrow A\rightarrow 0

we can construct the Baer sum, by forming the pullback Γ of C\rightarrow A and C'\rightarrow A. We form the quotient Y = Γ / Δ, with \Delta=\{(-b,b):b\in B\}. The extension

0\rightarrow B\rightarrow Y\rightarrow A\rightarrow 0

thus formed is called the Baer sum of the extensions C and C'.

The Baer sum ends up being an abelian group operation on the set of equivalence classes, with the extension

0\rightarrow B\rightarrow A\oplus B\rightarrow A\rightarrow 0

acting as the identity.

[edit] Ext in abelian categories

This identification enables us to define \operatorname{Ext}^1_{\mathcal C}(A,B) even for abelian categories \mathcal C without reference to projectives and injectives. We simply take \operatorname{Ext}^1_{\mathcal C}(A,B) to be the set of equivalence classes of extensions of A by B, forming an abelian group under the Baer sum. Similarily, we can define higher Ext groups \operatorname{Ext}^n_{\mathcal C}(A,B) as equivalence classes of n-extensions

0\rightarrow B\rightarrow X_n\rightarrow\cdots\rightarrow X_1\rightarrow A\rightarrow0

under the equivalence relation generated by the relation that identifies two extensions

0\rightarrow B\rightarrow X_n\rightarrow\cdots\rightarrow X_1\rightarrow A\rightarrow0 and
0\rightarrow B\rightarrow X'_n\rightarrow\cdots\rightarrow X'_1\rightarrow A\rightarrow0

if there are maps X_m\rightarrow X'_m for all m in 1,2,..,n so that every resulting square commutes.

The Baer sum of the two n-extensions above is formed by letting X''1 be the pullback of X1 and X'1 over A, and Yn be the quotient of the pushout of Xn and X'n under B by the skew diagonal, as above. Then we define the Baer sum of the extensions to be

0\rightarrow B\rightarrow Y_n\rightarrow X_{n-1}\oplus X'_{n-1}\rightarrow\cdots\rightarrow X_2\oplus X'_2\rightarrow X''_1\rightarrow A\rightarrow0.

[edit] Ring structure and module structure on specific Exts

There is one more very useful way to view the Ext functor. If we start with the viewpoint that an element of \operatorname{Ext}^n_{\mathcal C}(A,B) is an equivalence class of maps f: P_n\rightarrow B for a projective resolution P * of A, we can pick a long exact sequence Q * ending with B and lift the map f using the projectivity of the modules Pm to a chain map f_*: P_*\rightarrow Q_* of degree -n. It turns out that homotopy classes of such chain maps correspond precisely to the equivalence classes in the definition of Ext above.

Under sufficiently nice circumstances, such as when the ring R is a group ring, or a k-algebra, for a field k or even a noetherian ring k, we can impose a ring structure on \operatorname{Ext}^*_{\mathcal C}(k,k). The multiplication has quite a few equivalent interpretations, corresponding to different interpretations of the elements of \operatorname{Ext}^*_{\mathcal C}(k,k).

One interpretation is in terms of these homotopy classes of chain maps. Then the product of two elements is precisely the composition of the corresponding representatives. We can choose a single resolution of k, and do all the calculations inside \operatorname{Hom}_{\mathcal C}(P_*,P_*), which is a differential graded algebra, with homology precisely \operatorname{Ext}_{\mathcal C}(k,k).

Another interpretation, not in fact relying on the existence of projective or injective modules is that of Yoneda splices. Then we take the viewpoint above that an element of \operatorname{Ext}^n_{\mathcal C}(A,B) is an exact sequence starting in A and ending in B. This is then spliced with an element in \operatorname{Ext}^m_{\mathcal C}(B,C), by replacing

\rightarrow X_1\rightarrow B\rightarrow 0 and 0\rightarrow B\rightarrow Y_n\rightarrow

with

\rightarrow X_1\rightarrow Y_n\rightarrow

where the middle arrow is the composition of the functions X_1\rightarrow B and B\rightarrow Y_n.

These viewpoints turn out to be equivalent whenever both make sense.

Using similar interpretations, we find that \operatorname{Ext}_{\mathcal C}^*(k,M) is a module over \operatorname{Ext}^*_{\mathcal C}(k,k), again for sufficiently nice situations.

[edit] Interesting examples

If R is chosen to be the integral group ring \mathbb ZG for a group G, then \operatorname{Ext}^*_{\mathcal C}(\mathbb Z,M) is the group cohomology H * (G,M).

If R is chosen to be the modular group ring (\mathbb Z/p\mathbb Z)G for a group G, then \operatorname{Ext}^*_{\mathcal C}(\mathbb Z/p\mathbb Z,M) is also H * (G,M). In fact, it turns out that the group cohomology does not depend on which ring is chosen for base ring for the group ring.

If R is chosen to be A\otimes_k A^{op} for a k-algebra A, then \operatorname{Ext}^*_{\mathcal C}(A,M) is the Hochschild cohomology \operatorname{HH}^*(A,M).

If R is chosen to be the universal enveloping algebra for a Lie algebra \mathfrak g, then \operatorname{Ext}^*_{\mathcal C}(A,M) is the Lie algebra cohomology \operatorname{H}^*(\mathfrak g,M).

[edit] Reference

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu