Απόσταση (γεωμετρία)
Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Στη βασική Γεωμετρία η έννοια της απόστασης ορίζεται ως το ελάχιστο μήκος ευθήγραμμου τμήματος που συνδέει σημεία, ευθείες ή επίπεδα μεταξύ τους. Συγκεκριμένα απαντάται στις ακόλουθες περιπτώσεις:
- Απόσταση μεταξύ δύο σημείων: λέγεται το μήκος του ευθύγραμμου τμήματος που συνδέει τα δύο αυτά σημεία.
- Απόσταση σημείου από ευθείας: λέγεται το τμήμα καθέτου αγομένης από σημείου προς την ευθεία, η σημείου που συναντάται (προεκτεινόμενη) η ευθεία.
- Απόσταση δύο παραλλήλων ευθειών: λέγεται το μήκος της μεταξύ αυτών κοινής καθέτου, τέμνουσα αμφοτέρας.
- Απόσταση μεταξύ δύο ασυμβάτων ευθειών(δηλαδή μη κείμενων στο αυτό επίπεδο): λέγεται το μήκος της μεταξύ αυτών κοινής καθέτου.
- Απόσταση σημείου από επιπέδου: λέγεται το μήκος της καθέτου το αγόμενο από του σημείου προς το επίπεδο.
- Απόσταση μεταξύ δύο παραλλήλων επιπέδων: λέγεται το μεταξύ τούτων τμήμα οποιασδήποτε κοινής καθέτου διέρχόμενης αμφοτέρων.
- Απόσταση μεταξύ δύο συνόλων από σημεία: λέγεται το τμήμα του οποίου τα ακρα είναι από το ενα και το αλλο σύνολο και έχει το μικρότερο μήκος.
Τυπικά η απόσταση ορίζεται ως απόσταση μεταξύ δύο σημείων. Σε όλες τις παραπάνω περιπτώσεις αυτό ειναι που υπολογίζεται.
Στους ευκλείδειους χώρους χρησιμοποιείται συνήθως η ευκλείδεια μετρική, που ορίζει την απόσταση όπως την καταλαβαίνουμε διαισθητικά. Έτσι στον η απόσταση μεταξύ δύο σημείων
και
ορίζεται σύμφωνα με την ευκλείδεια μετρική ως
.
Στη γενική περίπτωση ενός συνόλου Μ η απόσταση μπορεί να δωθεί από μία συνάρτηση , η οποία ειναι ταυτοτική, συμμετρική και πληρεί την τριγωνική ανισότητα (μετρική).