New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Antiderivative (complex analysis) - Wikipedia, the free encyclopedia

Antiderivative (complex analysis)

From Wikipedia, the free encyclopedia

In complex analysis, a branch of mathematics, the antiderivative of a complex-valued function is a function whose complex derivative is the original function. As such, this concept is the analog of the antiderivative of a real-valued function, and these two notions have many similar properties as well as significant differences.

Formally, given an open set U in the complex plane and a function g:U\to \mathbb C, the antiderivative of g is a function f:U\to \mathbb C, whose complex derivative is g, f' = g.

Contents

[edit] Uniqueness of antiderivative

The derivative of a constant function is zero. Therefore, any constant is an antiderivative of the zero function. If U is a connected set, then the constants are the only antiderivatives of the zero function. Otherwise, a function is an antiderivative of the zero function if and only if it is constant on each connected component of U (those constants need not be equal).

This observation can be used to establish that if a function g:U\to \mathbb C has an antiderivative, then that antiderivative is unique up to addition of a function which is constant on each connected component of U.

[edit] Existence of antiderivative

[edit] Necessary conditions

If f is an antiderivative of g, then f is differentiable, that is, holomorphic. Then g is also holomorphic. As such, for a function to admit an antiderivative it must be holomorphic, that is, locally expandable into a power series. This is in stark contrast to functions of a real variable, where continuity or even weaker assumptions on a function can guarantee that it has an antiderivative.

If f is an antiderivative of g on U, then given any piecewise C1 path \gamma:[a, b]\to U one can express the path integral of g over γ as

\int_\gamma\! g(z)\,dz=\int_a^b \!g\left(\gamma(t)\right)\gamma'(t)\, dt=\int_a^b \!f'\left(\gamma(t)\right)\gamma'(t)\,dt.

By the chain rule and the fundamental theorem of calculus one then has

\int_\gamma \!g(z)\,dz=\int_a^b\! \frac{d}{dt}f\left(\gamma(t)\right)\,dt=f\left(\gamma(b)\right)-f\left(\gamma(a)\right).

As such, the integral of g over γ does not depend on the actual path γ, but only on its endpoints.

This observation shows that not every holomorphic function g admits an antiderivative. For example, consider the reciprocal function, g(z) = z − 1 defined on \mathbb C\backslash\{0\}. Given a nonzero number z0, one can find a circle going through z0 which contains the origin inside of it, and a circle going through z0 which does not contain the origin inside of it. By the residue theorem, the path integral over the first circle will be non-zero, and over the second one will be zero. Therefore, there exist two paths starting and ending at z0 on which integral of g gives different values, which cannot happen if this g admits an antiderivative.

[edit] Sufficient conditions

So far we outlined to necessary conditions for a function g to have an antiderivative, those being the holomorphicity of g, and that the integral of g over any path depend only on the endpoints of the path. It turns out that these two conditions are sufficient.

Thus, if for example the domain U of g is a simply connected set (in particular, a convex or star-convex set), then any g defined on U admits an antiderivative.

To prove that the conditions outlined above are sufficient for the existence of an antiderivative of g we can assume that the domain U of g is connected, as otherwise one can prove the existence of an antiderivative on each connected component. With this assumption, consider a point z0 in U, and for any z in U define

f(z)=\int_{\gamma}\! g(\zeta)\, d\zeta

where γ is any path joining z0 to z. Such a path exists since U is assumed to be an open connected set, and the obtained f(z) is well-defined as it does not depend on the choice of the path.

This f is an antiderivative of g. Indeed, let z be a point in U and consider a path γ from z0 to z. For any w in U close enough to z one can create a path from z0 to w by joining the path γ with a segment [z,w] from z to w. Then,

f(w)=\int_{\gamma\cup [z, w]}\! g(\zeta)\, d\zeta
=\int_{\gamma}\! g(\zeta)\, d\zeta+\int_{[z, w]}\! g(\zeta)\, d\zeta
=f(z)+\int_{[z, w]}\! g(\zeta)\, d\zeta.

The last integral is approximately (wz)g(z) for w very close to z (here we use the holomorphicity of g, although simple continuity would suffice). By moving f(z) on the left-hand side of the above equation, dividing by wz, and setting w\to z, one obtains f'(z) = g(z) which was to be proved.

[edit] References

  • Ian Stewart, David Tall (Mar 10, 1983). Complex Analysis. Cambridge University Press. ISBN 0-521-28763-4. 
  • Alan D Solomon (Jan 1, 1994). The Essentials of Complex Variables I. Research & Education Assoc. ISBN 0-87891-661-X. 

[edit] External links

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu