From Wikipedia, the free encyclopedia

<math>
H(1) = \begin{bmatrix}
1 & 1 \\
1 & -1 \end{bmatrix}
</math>

<math>
H(k) = \begin{bmatrix}
H(k-1) & H(k-1)\\
H(k-1) & -H(k-1)\end{bmatrix}
</math>
![\frac{1}{2}Q\left[f(a) + 2f(a+Q) + 2f(a+2Q) + 2f(a+3Q)+\dots+f(b)\right]](../../../math/6/7/b/67b845a486c32ab42348000305eae328.png)
<math>\frac{1}{2}Q\left[f(a) + 2f(a+Q) + 2f(a+2Q) + 2f(a+3Q)+\dots+f(b)\right]</math>

<math>\left \vert \int_{a}^{b} f(x) - A_{trap} \right \vert \le \frac{M_2(b-a)^3}{(12n^2)}</math>

<math>\sum_{x_i\in P} f(c_i)(g(x_{i+1})-g(x_i))</math>

<math>\int_a^b f(x) \, dg(x)=f(b)g(b)-f(a)g(a)-\int_a^b g(x) \, df(x)</math>

<math>
\begin{bmatrix}
1 & 0 & 2 \\
-1 & 3 & 1 \\
\end{bmatrix}
\times
\begin{bmatrix}
3 & 1 \\
2 & 1 \\
1 & 0
\end{bmatrix}
=
\begin{bmatrix}
(1 \times 3 + 0 \times 2 + 2 \times 1) & (1 \times 1 + 0 \times 1 + 2 \times 0) \\
(-1 \times 3 + 3 \times 2 + 1 \times 1) & (-1 \times 1 + 3 \times 1 + 1 \times 0) \\
\end{bmatrix}
=
\begin{bmatrix}
5 & 1 \\
4 & 2 \\
\end{bmatrix}
</math>
![(AB)[i,j] = A[i,1] B[1,j] + A[i,2] B[2,j] + ... + A[i,n] B[n,j] \!\](../../../math/3/6/8/3685038eaea4a600957beea930ad474c.png)
<math> (AB)[i,j] = A[i,1] B[1,j] + A[i,2] B[2,j] + ... + A[i,n] B[n,j] \!\ </math>