Talk:Kinetic theory
From Wikipedia, the free encyclopedia
Contents |
[edit] Postulates
The kinetic theory for ideal gases makes the following assumptions:
These molecules are in constant, random motion.
A particle can achive a velocity of 0 m/s, so i would deny it is in constant motion I suggest: The molecules move in random and chaotic motion. The velocities that the molecules can attain, cover the complete range between 0 and infinity and are distributed according the Maxwell-Bolzmann frequency distribution function.
Huisman 15:06, 2006 May 8 (GMT)
[edit] Kinetic theory (of gases)
We have an article called Kinetic theory of gases that redirects to an article called Kinetic theory. But the Kinetic theory article only seems to refer to gases! Shouldn't we either put the content under Kinetic theory of gases or add information about solids and liquids?
Brianjd 05:55, 2004 Nov 13 (UTC)
[edit] Pressure
The kinetic molecular theory has to do with the movement and collision of molecules. Molecules have to collide for a reaction to happen. The energy of the collision breaks the old chemical bonds so a reaction can happen and new bonds can form. So it's not only about gas particles.
The discussion of pressure is beyond me at the moment but I think it should be expanded to deal with any shaped container, not just a cube.
Brianjd 05:39, 2004 Nov 11 (UTC)
The derivation shown is a widely accepted standard derivation. To use a cube is traditional and (as far as I know) trivial.
sconzey 14:08, 2005 Sept 16 (GMT)
The notion TotalForce as it is used in the derivation is not correct or at least not consistent with the physical notion "force" which is a vector. In this sense the total force exerted in x direction is zero! The correct derivation is that if there is no preferred direction the averages of v_x^2, v_y^2 and v_z^2 all must be equal and so also equal to the average of 1/3*v^2.
Cede69 14:49, 24 August 2006 (UTC)
[edit] Flucluation dissipation theorem
The article should link to the fluctuation dissipation theorem. (AC)
[edit] Assumptions
Do the equations not assume that the particles do *not* collide with eachother?
sconzey 14:08, 2005 Sept 16 (GMT)
[edit] Improvements
The discussion should include calculations of viscosity and heat conduction for ideal gases and explain how the kinetic theory is rigorously derived from the Boltzmann equation. Mention should also be made of the Chapman-Enskog approach and Grad's moment approach which apply kinetic theory to non-ideal gasses Jim McElwaine 09:52, 28 April 2006 (UTC)
[edit] Moving molecules - why?
These molecules are in constant, random motion. The rapidly moving particles constantly collide with each other and with the walls of the container. - why are they moving? --Palnatoke 21:56, 9 February 2007 (UTC)