New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Models of DNA evolution - Wikipedia, the free encyclopedia

Models of DNA evolution

From Wikipedia, the free encyclopedia

A number of different Markov models of DNA sequence evolution have been proposed. This is because evolutionary processes vary between genomes and between different regions of a genome, for example different evolutionary processes apply to coding and noncoding regions. These models mostly differ in the parametrization of the rate matrix and in the modeling of rate variation.

Contents

[edit] DNA Evolution as a Continuous Time Markov Chain

[edit] Continuous Time Markov Chains

Continuous-time Markov chains have the usual transition matrices which are, in addition, parameterized by time, t\. Specifically, if E_1,\ldots,E_4\ are the states, then the transition matrix

P(t) = \big(P_{ij}(t)\big) where each individual entry, P_{ij}(t)\ refers to the probability that state E_i\ will change to state E_j\ in time t\.

Example: We would like to model the substitution process in DNA sequences (i.e. Jukes-Cantor, Kimura, etc.) in a continuous time fashion. The corresponding transition matrices will look like:

P(t) = \begin{pmatrix}          p_{AA}(t) & p_{AG}(t) & p_{AC}(t) & p_{AT}(t) \\                                  p_{GA}(t) & p_{GG}(t) & p_{GC}(t) & p_{GT}(t) \\                                  p_{CA}(t) & p_{CG}(t) & p_{CC}(t) & p_{CT}(t) \\                                  p_{TA}(t) & p_{TG}(t) & p_{TC}(t) & p_{TT}(t)                                  \end{pmatrix}

where the top-left and bottom-right 2\times 2\ blocks correspond to transition probabilities and the top-right and bottom-left 2\times 2\ blocks corresponds to transversion probabilities.

Assumption: If at some time t_0\, the Markov chain is in state E_i\, then the probability that at time t_0+t\, it will be in state E_j\ depends only upon i\, j\ and t\. This then allows us to write that probability as p_{ij}(t)\.

Theorem: Continuous-time transition matrices satisfy:

P(t+\tau) = P(t)P(\tau)\

[edit] Deriving the Dynamics of Substitution

Consider a DNA sequence of fixed length m evolving in time by base replacement. Assume that the processes followed by the m sites are Markovian independent, identically distributed and constant in time. For a fixed site, let

\mathbf{P}(t) = (p_A(t),\  p_G(t),\  p_C(t),\  p_T(t))^T

be the column vector of probabilities of states A, \ \ G, \ \ C, \ and \ T \ at time t \. Let

\mathcal{E} = \{A,\ G, \ C, \ T\}

be the state-space. For two distinct

x, y \in \mathcal{E}, let \mu_{xy}\

be the transition rate from state x\ to state y\. Similarly, for any x\, let:

\mu_x = \sum_{y\neq x}\mu_{xy}

The changes in the probability distribution p_A(t)\ for small increments of time \Delta t\ are given by:

p_A(t+\Delta t) = p_A(t) - p_A(t)\mu_A\Delta t + \sum_{x\neq A}p_x(t)\mu_{xA}\Delta t

In other words (in frequentist language), the frequency of A\'s at time t + \Delta t\ is equal to the frequency at time t\ minus the frequency of the lost A\'s plus the frequency of the newly created A\'s.

Similarly for the probabilities p_G(t), \ p_C(t), \ \mathrm{and} \ p_T(t). We can write these compactly as:

\mathbf{P}(t+\Delta t) = \mathbf{P}(t) + Q\mathbf{P}(t)\Delta t

where,

Q = \begin{pmatrix} -\mu_A & \mu_{GA} & \mu_{CA} & \mu_{TA} \\                             \mu_{AG} & -\mu_G  & \mu_{CG} & \mu_{TG} \\                             \mu_{AC} & \mu_{GC} & -\mu_C  & \mu_{TC} \\                             \mu_{AT} & \mu_{GT} & \mu_{CT} & -\mu_T \end{pmatrix}

or, alternately:

\mathbf{P}'(t) = Q\mathbf{P}(t)

where, Q\ is the rate matrix. Note that by definition, the rows of Q\ sum to zero.

[edit] Ergodicity

If all the transition probabilities, \mu_{xy}\ are positive, i.e. if all states x, y \in \mathcal{E}\ communicate, then the Markov chain has a stationary distribution \mathbf{\Pi} = \{\pi_x, \ x \in \mathcal{E} \} where each \pi_x \ is the proportion of time spent in state x\ after the Markov chain has run for infinite time, and this probability does not depend upon the initial state of the process. Such a Markov chain is called, ergodic. In DNA evolution, under the assumption of a common process for each site, the stationary frequencies, \pi_A, \pi_G, \pi_C, \pi_T \ correspond to equilibrium base compositions.

Definition A Markov process is stationary if its current distribution is the stationary distribution, i.e. \mathbf{P}(t) = \Pi\ Thus, by using the differential equation above,

\frac{d\Pi}{dt} = Q\Pi = 0

[edit] Time Reversibility

Definition: A stationary Markov process is time reversible if (in the steady state) the amount of change from state x\ to y\ is equal to the amount of change from y\ to x\, (although the two states may occur with different frequencies). This means that:

\pi_x\mu_{xy} = \pi_y\mu_{yx} \

Not all stationary processes are reversible, however, almost all DNA evolution models assume time reversibility, which is considered to be a reasonable assumption.

Under the time reversibility assumption, let s_{xy} = \mu_{xy}/\pi_y\, then it is easy to see that:

s_{xy} = s_{yx} \

Definition The symmetric term s_{xy}\ is called the exchangeability between states x\ and y\. In other words, s_{xy}\ is the fraction of the frequency of state x\ that results as a result of transitions from state y\ to state x\.

Corollary The 12 off-diagonal enteries of the rate matrix, Q\ (note the off-diagonal enteries determine the diagonal enteries, since the rows of Q\ sum to zero) can be completely determined by 9 numbers; these are: 6 exchangeability terms and 3 stationary frequencies \pi_x\, (since the stationary frequencies sum to 1).

[edit] References

  • Jukes, T.H. and C.R. Cantor. (1969) Evolution of Protein Molecules, pp. 21-132. Academic Press, New York.
  • Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111-120.
  • Hasegawa, M., H. Kishino, and T. Yano. (1985) Dating of human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22, 160-174.
  • Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17, 368-376.

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu