Unitary group
From Wikipedia, the free encyclopedia
In mathematics, the unitary group of degree n, denoted U(n), is the group of n×n unitary matrices, with the group operation that of matrix multiplication. The unitary group is a subgroup of the general linear group GL(n, C).
In the simple case n = 1, the group U(1) corresponds to the circle group, consisting of all complex numbers with norm 1 under multiplication. All the unitary groups contain copies of this group.
The unitary group U(n) is a real Lie group of dimension n2. The Lie algebra of U(n) consists of complex n×n skew-Hermitian matrices, with the Lie bracket given by the commutator.
The general unitary group (also called the group of unitary similitudes) consists of all matrices A such that AA * is a nonzero multiple of the identity matrix, and is just the product of the unitary group with the group of all positive multiples of the identity matrix.
Contents |
[edit] Properties
Since the determinant of a unitary matrix is a complex number with norm 1, the determinant gives a group homomorphism
The kernel of this homomorphism is the set of unitary matrices with unit determinant. This subgroup is called the special unitary group, denoted SU(n). We then have a short exact sequence of Lie groups:
This short exact sequence splits so that U(n) may be written as a semidirect product of SU(n) by U(1). Here the U(1) subgroup of U(n) consists of matrices of the form .
The unitary group U(n) is nonabelian for n > 1. The center of U(n) is the set of scalar matrices λI with λ ∈ U(1). This follows from Schur's lemma. The center is then isomorphic to U(1). Since the center of U(n) is a 1-dimensional abelian normal subgroup of U(n), the unitary group is not semisimple.
[edit] Topology
The unitary group U(n) is endowed with the relative topology as a subset of Mn(C), the set of all n×n complex matrices, which is itself homeomorphic to a 2n2-dimensional Euclidean space.
As a topological space, U(n) is both compact and connected. The compactness of U(n) follows from the Heine-Borel theorem and the fact that it is a closed and bounded subset of Mn(C). To show that U(n) is connected, recall that any unitary matrix A can be diagonalized by another unitary matrix S. Any diagonal unitary matrix must have complex numbers of absolute value 1 on the main diagonal. We can therefore write
A path in U(n) from the identity to A is then given by
Although it is connected, the unitary group is not simply connected. The first unitary group U(1) is topologically a circle, which is well known to have a fundamental group isomorphic to Z. In fact, the fundamental group of U(n) is infinite cyclic for all n:
One can show that the determinant map det : U(n) → U(1) induces an isomorphism of fundamental groups.
[edit] Classifying space
The classifying space for U(n) is described in the article classifying space for U(n).