Plantilla:BD poliedros regulares
De Wikipedia, la enciclopedia libre
{{{{{1}}}|{{{2}}}|CC={{{CC}}}|CO={{{CO}}}|
|000-N1=Nombre completo| |000-N2=Nombre abreviado| |000-N3=Nombre alternativo| |000-I1=Imagen *.png| |000-I2=Imagen *.jpg| |000-I3=Animación *.gif| |000-B=Abreviatura de Bowers| |000-K=Número de Kalido| |000-S1=Símbolo de Schläfli 1| |000-S1=Símbolo de Schläfli 2| |000-U=Número entre los poliedros uniformes| |000-W=Número de Wenninger| |000-X=Número de Coxeter| |000-Y=Símbolo de Wythoff| |000-A=Número de aristas| |000-C=Número de caras| |000-DC=Detalle de las caras| |000-V=Número de vértices| |000-FV=Figura vértice| |000-AV=Figura vértice abreviada| |000-IV=Imagen *.png de la figura vértice| |000-E=Característica de Euler| |000-GS=Grupo de simetría| |000-D=Poliedro dual| |000-AD=Ángulo diedro| |000-FE=Familia especial|
|001-N1=Tetraedro regular| |001-N2=Tetraedro| |001-N3=| |001-I1=tetrahedron.png| |001-I2=tetrahedron.jpg| |001-I3=tetrahedron.gif| |001-B=Tet| |001-K=06| |001-S1={3,3}| |001-S2=| |001-U=01| |001-W=1| |001-X=15| |001-Y=3 | 2 3| |001-A=6| |001-C=4| |001-DC=4{3}| |001-V=4| |001-FV=3·3·3| |001-AV=33| |001-IV=tetrahedron_vertfig.png| |001-E=2| |001-GS=Td| |001-D=001| |001-AD=arccos(⅓)≈70,5288°| |001-FE=Deltaedro|
|002-N1=Hexaedro regular| |002-N2=Cubo| |002-N3=Hexaedro| |002-I1=hexahedron.png| |002-I2=hexahedron.jpg| |002-I3=hexahedron.gif| |002-B=Cube| |002-K=11| |002-S1={4,3}| |002-S2=| |002-U=06| |002-W=3| |002-X=18| |002-Y=3 | 2 4| |002-A=12| |002-C=6| |002-DC=6{4}| |002-V=8| |002-FV=4·4·4| |002-AV=43| |002-IV=Cube_vertfig.png| |002-E=2| |002-GS=Oh| |002-D=003| |002-AD=90°| |002-FE=Zonoedro|
|003-N1=Octaedro regular| |003-N2=Octaedro| |003-N3= | |003-I1=octahedron.png| |003-I2=octahedron.jpg| |003-I3=octahedron.gif| |003-B=Oct| |003-K=10| |003-S1={3,4}| |003-S2=y |003-U=05| |003-W=2| |003-X=17| |003-Y=4 | 2 3| |003-A=12| |003-C=8| |003-DC=8{3}| |003-V=6| |003-FV=3·3·3·3| |003-AV=34| |003-IV=octahedron_vertfig.png| |003-E=2| |003-GS=Oh| |003-D=002| |003-AD=arccos(-⅓)≈109,4712°| |003-FE=Deltaedro|
|004-N1=Dodecaedro regular| |004-N2=Dodecaedro| |004-N3=| |004-I1=dodecahedron.png| |004-I2=dodecahedron.jpg| |004-I3=dodecahedron.gif| |004-B=Doe| |004-K=28| |004-S1={5,3}| |004-S2=| |004-U=23| |004-W=5| |004-X=26| |004-Y=3 | 2 5| |004-A=30| |004-C=12| |004-DC=12{5}| |004-V=20| |004-FV=5·5·5| |004-AV=53| |004-IV=dodecahedron_vertfig.png| |004-E=2| |004-GS=Ih| |004-D=005| |004-AD=arccos(-1/√5)≈116,5651°| |004-FE=|
|005-N1=Icosaedro regular| |005-N2=Icosaedro| |005-N3=| |005-I1=icosahedron.png| |005-I2=icosahedron.jpg| |005-I3=icosahedron.gif| |005-B=Ike| |005-K=27| |005-S1={3,5}| |005-S2=y |005-U=22| |005-W=4| |005-X=25| |005-Y=5 | 2 3 |005-A=30| |005-C=20| |005-DC=20{3}| |005-V=12| |005-FV=3·3·3·3·3| |005-AV=35| |005-IV=icosahedron_vertfig.png| |005-E=2| |005-GS=Ih| |005-D=004| |005-AD=≈138,1897°| |005-FE=Deltaedro|
|006-N1=Pequeño dodecaedro estrellado| |006-N2=Pequeño dodecaedro estrellado| |006-N3= | |006-I1=Small stellated dodecahedron.png| |006-I2=| |006-I3=SmallStellatedDodecahedron.gif| |006-B=Sissid| |006-K=39| |006-S1={5/2,5}| |006-S2=| |006-U=34| |006-W=20| |006-X=43| |006-Y=5 | 25/2| |006-A=30| |006-C=12| |006-DC=12{5/2}| |006-V=12| |006-FV=5/2·5/2·5/2·5/2·5/2| |006-AV=5/25| |006-IV=Small stellated dodecahedron_vertfig.png| |006-E=-6| |006-GS=Ih| |006-D=009| |006-AD=?| |006-FE=|
|007-N1=Gran dodecaedro estrellado| |007-N2=Gran dodecaedro estrellado| |007-N3=| |007-I1=Great stellated dodecahedron.png| |007-I2=| |007-I3=GreatStellatedDodecahedron.gif| |007-B=Gissid| |007-K=57| |007-S1={5/2,3}| |007-S2=| |007-U=52| |007-W=22| |007-X=68| |007-Y=3 | 25/2| |007-A=30| |007-C=12| |007-DC=12{5/2}| |007-V=20| |007-FV=5/2·5/2·5/2| |007-AV=5/23| |007-IV=Great stellated dodecahedron_vertfig.png| |007-E=2| |007-GS=Ih| |007-D=008| |007-AD=?| |007-FE=|
|008-N1=Gran icosaedro| |008-N2=Gran icosaedro| |008-N3=Decimosexta estelación del icosaedro| |008-I1=Great icosahedron.png| |008-I2=| |008-I3=GreatIcosahedron.gif| |008-B=Gike| |008-K=58| |008-S1={3,5/2}| |008-S2=| |008-U=53| |008-W=41| |008-X=69| |008-Y=5/2 | 2 3| |008-A=30| |008-C=20| |008-DC=20{3}| |008-V=12| |008-FV=(3·3·3·3·3)/2| |008-AV=35/2| |008-IV=Great icosahedron_vertfig.png| |008-E=2| |008-GS=Ih| |008-D=007| |008-AD=?| |008-FE=Deltaedro|
|009-N1=Gran dodecaedro| |009-N2=Gran dodecaedro| |009-N3=| |009-I1=Great dodecahedron.png| |009-I2=| |009-I3=GreatDodecahedron.gif| |009-B=Gad| |009-K=40| |009-S1={5,5/2}| |009-S2=| |009-U=35| |009-W=21| |009-X=44| |009-Y=5/2 | 2 5| |009-A=30| |009-C=12| |009-DC=12{5}| |009-V=12| |009-FV=(5·5·5·5·5)/2| |009-AV=55/2| |009-IV=Great dodecahedron_vertfig.png| |009-E=-6| |009-GS=Ih| |009-D=006| |009-AD=?| |009-FE=|
}}