New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Numeración arábiga - Wikipedia, la enciclopedia libre

Numeración arábiga

De Wikipedia, la enciclopedia libre

Los Números arábigos son los símbolos más utilizados para representar números. Se les llama "arábigos" sólo porque los árabes los introdujeron a Europa, pero en realidad son invención de los hindúes. El mundo le debe a la India el invento trascendental del sistema de numeración de base 10, llamado de posición, así como el descubrimiento del 0 (llamado "sunya" o "bindu" en lengua sánscrita), aunque los mayas también conocieron el 0, pero en un sistema "vigecimal", muy distinto al que utilizamos. El sistema numérico llamado "arábigo" es un sistema posicional que se basa en el número 10; consta de 10 glifos diferentes para representar los 10 dígitos. El valor de un dígito varía según la posición que ocupa dentro del número mutiplicándose por la base elevado a la posición. Así, el primer dígito comenzando por la derecha tiene el valor que representa su símbolo multiplicado por 100(=1). El dígito situado a su izquierda tiene el valor que representa su símbolo multiplicado por 101(=10), y así sucesivamente. La fórmula genérica para un número de n dígitos es \sum_{i=1}^{n}x_i\cdot10^{(i-1)} donde xi es el dígito situado en la posición i comenzando por la derecha. Por ejemplo:

''639''=(6\cdot10^2)+(3\cdot10^1)+(9\cdot10^0)= (6\cdot100)+(3\cdot10 )+(9\cdot1)=600+30+9=639

El sistema "arábigo" se ha representado (y se representa) utilizando muchos conjuntos de glifos diferentes. Estos glifos pueden dividirse en dos grandes familias, los numerales arábigos occidentales y los orientales. Los orientales, que se desarrollaron en lo que actualmente se corresponde a Irak, se representan en la tabla que viene a continuación como Arábigo-Índico. El Arábigo-Índico oriental es una variedad de los glifos arábigo-índicos. Los numerales arábigos occidentales, desarrollados en Al-Andalus y el Magreb se muestran en la tabla como Europeo

Europeo 0 1 2 3 4 5 6 7 8 9
Arábico-Índico ٠ ١ ٢ ٣ ٤ ٥ ٦ ٧ ٨ ٩
Arábico-Índico Oriental
(Persa y Urdu)
۰ ۱ ۲ ۳ ۴ ۵ ۶ ۷ ۸ ۹
Devanagari
(Hindi)
Tamil  

En Japón, los números "arábigos" y el alfabeto latino forman parte del sistema de escritura rōmaji. Así, si un número está escrito con glifos "arábigos", ellos dirán que “está escrito en rōmaji” en contraposición a la numeración japonesa.

[editar] Historia

El sistema de numeración arábigo se considera uno de los avances más significativos de las matemáticas. La mayoría de los historiadores coinciden en afirmar que tuvo su origen en la India (los árabes se refieren a este sistema de numeración como “Números Indios”, أرقام هندية, arqam hindiyyah), y se expandió por el mundo islámico y de ahí vía al-Andalus al resto de Europa.

Se especula que el origen del sistema posicional base 10 utilizado en la India tuviera sus orígenes en China. El sistema chino Hua Ma (ver Numeración china) es también posicional y de base 10 y pudo haber servido de inspiración para el sistema que surgió en la India. Esta hipótesis cobra fuerza por el hecho de que entre los siglos V y VIII (periodo durante el cual se desarrolló el sistema numérico indio) coincidió con una gran afluencia de peregrinos budistas entre China y la India. Lo que es cierto es que en la época de Bhaskara I (Siglo VII) en la India se utilizaba un sistema numeral posicional base 10 con 9 glifos, y se conocía el concepto del cero, representado por un punto.

Este sistema de numeración llegó a Oriente Medio hacia el año 670. Matemáticos musulmanes del actual Irak, como al-Jwarizmi ya estaban familiarizados con la numeración babilónica, que utilizaba el cero entre dígitos distintos de cero (aunque no tras dígitos distintos de cero), así que el nuevo sistema no tuvo una difícil acogida. En el siglo X los matemáticos árabes incluyeron en su sistema de numeración las fracciones.

Fibonacci, un matemático italiano que había estudiado en Bejaia (en la actual Argelia), contribuyó a la difusión por Europa del sistema arábigo con su libro Liber Abaci, publicado en 1202. Sin embargo no fue hasta la invención de la imprenta cuando este sistema de numeración comenzó a utilizarse de forma generalizada.

Curiosamente, hasta tiempos relativamente recientes, en el mundo musulmán solamente los matemáticos utilizaban el sistema de numeración arábigo. Los científicos utilizaban el sistema babilónico y los comerciantes los sistemas griego y hebreo.

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu