Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Fick's law of diffusion - Wikipedia, the free encyclopedia

Fick's law of diffusion

From Wikipedia, the free encyclopedia

For the technique of measuring cardiac output, see Fick principle.

Fick's laws of diffusion describe diffusion, and define the diffusion coefficient D.

Contents

[edit] History

Fick's laws of diffusion were derived by Adolf Fick in the year 1855.

[edit] Fick's first law

Fick's first law is used in steady-state diffusion, i.e., when the concentration within the diffusion volume does not change with respect to time (Jin = Jout).

J = - D \frac{\partial \phi}{\partial x}

where

  • J is the diffusion flux in dimensions of [(amount of substance) length-2 time-1], [mol m-2 s-1]
  • D is the diffusion coefficient or diffusivity in dimensions of [length2 time-1], [m2 s-1].
  • φ is the concentration in dimensions of [(amount of substance) length-3], [mol m-3]
  • x is the position [length], [m]

D is proportional to the velocity of the diffusing particles, which depends on the temperature, viscosity of the fluid and the size of the particles according to the Stokes-Einstein relation. For the biological molecules the diffusion coefficients normally range from 10-11 to 10-10 [m2 s-1].

[edit] Fick's second law

Fick's second law is used in non-steady or continually changing state diffusion, i.e., when the concentration within the diffusion volume changes with respect to time.

\frac{\partial \phi}{\partial t} = D \frac{\partial^2 \phi}{\partial x^2} \,\!

Where

  • φ is the concentration in dimensions of [(amount of substance) length-3], [mol m-3]
  • t is time [s]
  • D is the diffusion coefficient in dimensions of [length2 time-1], [m2 s-1]
  • x is the position [length], [m]

It can be derived from the Fick's First law and the mass balance:

\frac{\partial \phi}{\partial t} =-\frac {\partial} {\partial x} J = \frac {\partial} {\partial x} (D \frac {\partial} {\partial x} \phi)  \,\!

Assuming the diffusion coefficient D to be a constant we can exchange the orders of the differentiating and multiplying on the constant:

\frac {\partial} {\partial x} (D \frac {\partial} {\partial x} \phi) = D \frac {\partial} {\partial x}  \frac {\partial} {\partial x} \phi= D \frac{\partial^2 \phi}{\partial x^2}

and, thus, receive the form of the Fick's equations as was stated above.

For the case of 3-dimensional diffusion the Second Fick's Law looks like:

\frac{\partial \phi}{\partial t} = D \nabla^2 \phi \,\!,

where \nabla is the usual del operator.

Finally if the diffusion coefficient is not a constant, but depends upon the coordinate and/or concentration, the Second Fick's Law looks like:

\frac{\partial \phi}{\partial t} =  \nabla \cdot (D \nabla \phi) \,\!

For example for the steady states, when concentration does not change by time, the left part of the above equation will be zero and therefore in one dimension and when D is constant, the solution for the concentration will be the linear change of concentrations along x.

[edit] Applicability

Equations based on Fick's law have been commonly used to model transport processes in foods, neurons, biopolymers, pharmaceuticals, porous soils, semiconductor doping process, etc. A large amount of experimental research in polymer science and food science has shown that a more general approach is required to describe transport of components in materials undergoing glass transition. In the vicinity of glass transition the flow behavior becomes "non-Fickian". See also non-diagonal coupled transport processes (Onsager relationship).

[edit] Temperature dependence of the diffusion coefficient

The diffusion coefficient at different temperatures is often found to be well predicted by

D = D_0 e^{-\frac{E_{A}}{RT}}

Where:

  • D is the diffusion coefficient
  • D0 is the maximum diffusion coefficient (at infinite temperature)
  • EA is the activation energy for diffusion in dimensions of [energy (amount of substance)-1]
  • T is the temperature in units of [absolute temperature] (kelvins or degrees Rankine)
  • R is the gas constant in dimensions of [energy temperature-1 (amount of substance)-1]


Typically, a compound's diffusion coefficient is ~10,000x greater in air than in water. Carbon dioxide in air has a diffusion coefficient of 16 mm²/s, and in water, its coefficient is 0.0016 mm²/s [1].

[edit] Biological perspective

The first law gives rise to the following formula:[1]

\mathrm{Rate\ of\ diffusion} = \frac{{K A (P_2 - P_1)}}{d} \,\!

It states that the rate of diffusion of a gas across a membrane is

  • Constant for a given gas at a given temperature by an experimentally determined factor, K
  • Proportional to the surface area over which diffusion is taking place, A
  • Proportional to the difference in partial pressures of the gas across the membrane, P2P1
  • Inversely proportional to the distance over which diffusion must take place, or in other words the thickness of the membrane, d.

Fick's first law is also important in radiation transfer equations. However, in this context it becomes inaccurate when the diffusion constant is low and the radiation becomes limited by the speed of light rather than by the resistance of the material the radiation is flowing through. In this situation, one can use a flux limiter.

The exchange rate of a gas across a fluid membrane can be determined by using this law together with Graham's law.

[edit] See also

[edit] References

  1. ^ Physiology at MCG 3/3ch9/s3ch9_2
  • A. Fick, Phil. Mag. (1855), 10, 30.
  • A. Fick, Poggendorff's Annel. Physik. (1855), 94, 59.
  • W.F. Smith, Foundations of Materials Science and Engineering 3rd ed., McGraw-Hill (2004)
  • H.C. Berg, Random Walks in Biology, Princeton (1977)

[edit] External links

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu