Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions User:Fropuff/Draft 4 - Wikipedia, the free encyclopedia

User:Fropuff/Draft 4

From Wikipedia, the free encyclopedia

Contents

[edit] Hom functors

[edit] Dictionary

Let f:A_1\to A_2 and g:B_1\to B_2 be morphisms between objects in a category C. Let A and B be objects in C. Then we can define the following objects:

Hom(A,B) set
Hom(f,B) function \mathrm{Hom}(A_2,B)\to\mathrm{Hom}(A_1,B)\, \phi\mapsto \phi\circ f
Hom(A,g) function \mathrm{Hom}(A,B_1)\to\mathrm{Hom}(A,B_2)\, \phi\mapsto g\circ\phi
Hom(f,g) function \mathrm{Hom}(A_2,B_1)\to\mathrm{Hom}(A_1,B_2)\, \phi\mapsto g\circ\phi\circ f
Hom(A, − ) functor \mathcal C\to \mathbf{Set} B\mapsto\mathrm{Hom}(A,B)

g\mapsto\mathrm{Hom}(A,g)

Hom( − ,B) functor \mathcal C^{\mathrm{op}}\to \mathbf{Set} A\mapsto\mathrm{Hom}(A,B)

f\mapsto\mathrm{Hom}(f,B)

Hom(f, − ) natural transformation \mathrm{Hom}(A_2,-)\to\mathrm{Hom}(A_1,-)\, \mathrm{Hom}(f,B)\,
Hom( − ,g) natural transformation \mathrm{Hom}(-,B_1)\to\mathrm{Hom}(-,B_2)\, \mathrm{Hom}(A,g)\,
Hom( − , − ) bifunctor \mathcal C^{\mathrm{op}}\times\mathcal C\to \mathbf{Set} (A,B)\mapsto\mathrm{Hom}(A,B)
(f,g)\mapsto\mathrm{Hom}(f,g)
Hom( − 1, − 2) functor \mathcal C^{\mathrm{op}}\to \mathbf{Set}^{\mathcal C} A\mapsto\mathrm{Hom}(A,-)
f\mapsto\mathrm{Hom}(f,-)
Hom( − 2, − 1) functor \mathcal C\to \mathbf{Set}^{\mathcal C^{\mathrm{op}}} B\mapsto\mathrm{Hom}(-,B)
g\mapsto\mathrm{Hom}(-,g)



[edit] Comma categories

comma category (TS)

  • hom-set category (AB) = Hom(A, B) as a discrete category
  • morphism (or arrow) category (CC) = C2
  • (UA), objects U over A, or morphisms from U to A
    • slice category, objects over A, written (CA) or C/A
    • (Δ ↓ F) category of cones to F
  • (AU), objects U under A, or morphisms from A to U
    • coslice category, objects under A, written (AC) or A/C
    • (F ↓ Δ) category of cones from F

[edit] Slice category

Let C be a category and let A be an object in C. The slice category is denoted (CA) or C/A.

  • objects are morphisms to A in C, e.g. f : XA
  • morphisms are commutative triangles φ : (f : XA) → (g : YA) with f = g∘φ

The forgetful functor, U : C/AC, assigns to each morphism f : XA its domain X. If C has finite products this functor has a right-adjoint which assigns to each space Y the projection map (A × YA). U then commutes with colimits.

[edit] Limits and colimits

  • If I is an initial object in C then (IA) is an initial object in C/A.
  • The coproduct of fX and fY is the natural morphism fX+Y.
  • (idA : AA) is a terminal object in C/A.
  • Products in C/A are pullbacks in C.

[edit] Examples

  • If A is terminal, then C/A is isomorphic to C.
  • If C is a poset category, C/A is the principal ideal of objects less than A.
  • Set/ℕ is the category of graded sets (morphisms must preserve the grade, so perhaps different than a multiset)

[edit] Coslice category

Let C be a category and let A be an object in C. The coslice category is denoted (AC) or A/C.

  • objects are morphisms from A in C, e.g. f : AX
  • morphisms are commutative triangles φ : (f : AX) → (g : AY) with g = φ∘f.

[edit] Limits and colimits

[edit] Examples

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu