Anticoïndicateur
Un article de Wikipédia, l'encyclopédie libre.
Cet article est une ébauche à compléter concernant les mathématiques, vous pouvez partager vos connaissances en le modifiant. |
En mathématiques, un anticoïndicateur est un entier positif n qui ne peut pas être exprimé comme la différence entre un entier positif m et le nombre des entiers inférieurs à lui et premier avec lui. Exprimé algébriquement, , où m est l'inconnue, et représente la fonction indicatrice d'Euler, ne possède pas de solution.
Il a été conjecturé que tous les anticoïndicateurs sont pairs. Ceci découle d'une forme modifiée de la conjecture de Goldbach : si le nombre pair n peut être représenté comme une somme de deux nombres premiers distincts p et q, alors Il a été espéré que chaque nombre pair plus grand que 6 soit une somme de nombres premiers distincts, alors aucun nombre impair plus grand que 5 n'est probablement un anticoïndicateur. Les nombres pairs restants sont couverts par les observations suivantes : et .
Les premiers petits anticoïndicateurs sont (suite id:A005278 sur l'OEIS) :
10, 26, 34, 50, 52, 58, 86, 100, 116, 122, 130, 134, 146, 154, 170, 172, 186, 202, 206, 218, 222, 232, 244, 260, 266, 268, 274, 290, 292, 298, 310, 326, 340, 344, 346, 362, 366, 372, 386, 394, 404, 412, 436, 466, 470, 474, 482, 490, 518, 520
Erdős et Sierpinski se sont demandés s'il existe une infinité d'anticoïndicateurs. Ceci fut finalement répondu par l'affirmative par Browkin et Schinzel (1995), qui ont montré que chaque membre de la famille infinie est un exemple. Comme pour d'autres familles infinies, ou de même forme brute, qui ont été données par Flammenkamp et Luca. Néanmoins, on ne sait toujours pas si l'ensemble des anticoïndicateurs possède une densité de Schnirelmann positive basse.