New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Composantes d'un vecteur - Wikipédia

Composantes d'un vecteur

Un article de Wikipédia, l'encyclopédie libre.

En algèbre linéaire, les composantes d'un vecteur sont une représentation explicite d'un vecteur d'un espace vectoriel par une famille de nombres, ou par un élément de l'espace vectoriel Kn, K étant un corps commutatif.

Les composantes des vecteurs (d'un espace vectoriel de dimension finie) permettent de ramener des calculs vectoriels à des calculs sur des tableaux de nombres (n-uplets, matrices, vecteurs colonnes) qui peuvent être effectués explicitement.

Sommaire

[modifier] Définition

Soit E un espace vectoriel de dimension n sur un corps commutatif K et soit \mathcal{B} = \left( b_1, b_2, \ldots, b_n \right) une base de E.

Alors pour tout vecteur v de E, il existe une unique combinaison linéaire des vecteurs de la base, égale à v:

v = \alpha _1 b_1 + \alpha _2 b_2 + \cdots + \alpha _n b_n

D'après l'une des propriétés des bases, les scalaires αii\in \{1, \ldots, n\} sont déterminés de façon unique par v et \mathcal{B}.

Maintenant, les composantes (ou les coordonnées) de v dans la base \mathcal{B} ou relativement à la base \mathcal{B}, sont par définition la famille \left(\alpha_1, \ldots, \alpha_n\right). Les composantes peuvent aussi être représentées en colonne sous forme d'une matrice:

\begin{pmatrix} \alpha _1 \\ \vdots \\ \alpha _n \end{pmatrix}..

La matrice est appelée matrice colonne des composantes (ou des coordonnées) ou vecteur colonne des composantes de v.

Cette matrice est parfois notée M_{\mathcal{B}}(v), Mat_{\mathcal{B}}(v) ou encore [v]_{\mathcal{B}}.

Pour i\in\{1,\ldots,n\}, le scalaire αi est appelé la ième composante ou ième coordonnée du vecteur v.

[modifier] Application composantes

Considérons E étant un espace vectoriel sur un corps commutatif K, muni d'une base \mathcal{B}=\left( b_1, b_2, \ldots, b_n \right).

Le mécanisme précédent qui fait correspondre à un vecteur ses composantes peut être décrit par l'application \varphi_{\mathcal{B}} qui à un vecteur v de E associe ses composantes dans la base \mathcal{B} et définie par:

\forall v\in E, \varphi_{\mathcal{B}}(v)=\left(\alpha_1, \ldots, \alpha_n\right),

\alpha_1, \ldots, \alpha_n appartiennent à K et vérifient v=\alpha_1.b_1+\cdots+\alpha_n.b_n.

Alors \varphi_{\mathcal{B}} est une application linéaire de E dans Kn.

En fait cette application est un isomorphisme, et sa réciproque \varphi_{\mathcal{B}}^{-1}:K^n\to E est définie par

\forall (\alpha_1,\ldots,\alpha_n)\in K^n, \varphi_{\mathcal{B}}^{-1}(\alpha_1,\ldots,\alpha_n)=\alpha_1 b_1+\cdots+\alpha_n b_n.

Il est aussi possible de commencer par définir \varphi_{\mathcal{B}}^{-1} l'application réciproque de l'application du début, de constater que \varphi_{\mathcal{B}}^{-1} est un isomorphisme, puis de définir \varphi_{\mathcal{B}} comme son application réciproque.

Remarque: Même si cette application permet d'identifier un vecteur de E à ses composantes, il est hors de question de confondre les deux, puisque les coordonnées d'un vecteur dépendent en général de la base choisie.

[modifier] Exemples

[modifier] Exemple 1

Soit \mathbb{R}_3[x] l'espace vectoriel des polynômes de degré inférieur à 4 (c'est-à-dire dont la plus grande puissance de x est 4). Cet espace est engendré par la partie suivante:

{1,x,x2,x3}

et la famille \mathcal{B}=(1,  x,  x^2,  x^3) est une base de cet espace.

La matrice colonne des composantes dans cette base du polynôme

p \left( x \right) = a_0 + a_1 x + a_2 x^2 + a_3 x^3

s'écrit \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} .

Relativement à cette base, l'opérateur de dérivation \frac{{\rm d}}{{\rm d}x} que nous noterons D qui à p associe Dp = p' est représenté par la matrice suivante:

Mat_{\mathcal{B}}(D) =  \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ \end{pmatrix}

En utilisant cette représentation il est aisé de déterminer les propriétés de l'opérateur: comme l'inversibilité, s'il est hermitien ou anti-hermitien ou rien du tout, son spectre ses valeurs propres etc.

[modifier] Exemple 2

Les matrices de Pauli représentent l'opérateur spin lorsque les vecteurs propres correspondant à l'état de spin sont transformés en coordonnées.

Portail des mathématiques – Accédez aux articles de Wikipédia concernant les mathématiques.
Autres langues

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu