Détecteur Everhart-Thornley
Un article de Wikipédia, l'encyclopédie libre.
Le détecteur Everhart-Thornley est un détecteur d'électrons utilisé principalement dans les microscopes électroniques à balayage (MEB). Il a été développé dans les années 60 par Thomas Eugene Everhart et RFM Thornley à l'université de Cambridge.
Sommaire |
[modifier] Histoire
En 1960, deux étudiants de Charles Oatley, Thomas Eugene Everhart et RFM Thornley, ont eu l'idée, pour améliorer le système de collection utilisé à l'origine par Vladimir Zworykin et qui était constitué d'un écran phosphorescent/photomultiplicateur, d'ajouter un guide de lumière entre cet écran phosphorescent et ce photomultiplicateur. Ce guide permettait un couplage entre le scintillateur et le photomultiplicateur, ce qui améliorait grandement les performances. Inventé il y a plus d'un demi-siècle, ce détecteur est aujourd'hui celui le plus fréquemment utilisé.
[modifier] Principe
Un détecteur Everhart-Thornley est composé d'un scintillateur qui émet des photons lorsqu'il est frappé par des électrons à haute énergie. Ces photons sont collectés par un guide de lumière et transportés vers un photomultiplicateur pour la détection. Le scintillateur est porté à une tension de plusieurs kilovolts afin de communiquer de l'énergie aux électrons secondaires détectés - il s'agit en fait d'un procédé d'amplification. Pour que ce potentiel ne perturbe pas les électrons incidents, il est nécessaire de disposer une sorte de cage de Faraday pour blinder le scintillateur. Dans le fonctionnement normal, la cage de Faraday est polarisée à quelque +200 volts par rapport à l'échantillon de façon à créer à la surface de l'échantillon un champ électrique suffisant pour drainer les électrons secondaires, mais assez faible pour ne pas créer d'aberrations sur le faisceau incident. Cette cage de Faraday peut aussi être polarisée.
Si la cage de Faraday est à un potentiel suffisamment élevé, les électrons secondaires sont accélérés à une énergie suffisamment grande pour pouvoir être détectés. Ce mode de fonctionnement n'est pas possible dans un MEB à faible vide étant donné que le potentiel du scintillateur ioniserait l'atmosphère de la chambre d'observation.
[modifier] Fonctionnement en tension positive
Sous une tension positive pouvant atteindre 250 volts (voir schéma à gauche), la cage de Faraday attire avec beaucoup d'efficacité les électrons secondaires provenant de l'échantillon. Ce n'est pas seulement vrai pour les électrons provenant de l'échantillon mais également pour les électrons provenant de la chambre elle-même. C'est parce que le champ électrique généré par la cage de Faraday est fortement dissymétrique qu'on peut obtenir un effet de relief.
[modifier] Fonctionnement en tension négative
Lorsque le détecteur est utilisé avec une tension négative pouvant aller jusqu'à - 50 volts (voir schéma à droite), le détecteur est capable de rejeter jusqu'à 90 % des électrons secondaires car leur énergie est souvent inférieure à 10 eV. Le détecteur Everhart-Thornley devient donc dans ce cas-là un détecteur d'électrons rétrodiffusés.
La plupart des détecteurs détectent des électrons avec une énergie de 10 à 15 keV. C'est dans cet ordre de grandeur d'énergies que l'on retrouve les électrons rétrodiffusés mais pas les électrons secondaires.