Formules de Binet
Un article de Wikipédia, l'encyclopédie libre.
![]() |
Cet article est une ébauche à compléter concernant la physique, vous pouvez partager vos connaissances en le modifiant. |
En physique, en mécanique classique, les formules de Binet sont des expressions de la vitesse et de l'accélération d'un corps soumis à une force centrale telle que la gravitation ou un champ électrostatique.
Elles permettent d'exprimer, en coordonnées polaires, la position d'un mobile en fonction de l'angle formé par celui-ci. En effet, l'expression en fonction du temps est beaucoup plus difficile à établir. En particulier, les formules de Binet permettent de démontrer que, dans un champ de force centrale en 1/r², les trajectoires sont des coniques.
[modifier] Formules de Binet
On considère tout d'abord le cas attractif. En posant u = 1/r et en notant C la constante des aires, d'après la seconde loi de Kepler, on peut montrer que :
;
.
Dans le cas répulsif, les composantes selon er seraient positives.
[modifier] Trajectoires coniques
On considère ici le cas attractif, le cas répulsif donnant exactement le même résultat. En utilisant la seconde loi de Newton, on a :
.
En insérant l'expression de l'accélération et en remplaçant 1/r par u, puis enfin en projetant selon er, on a :
, soit encore :
.
Cette équation différentielle s'intègre facilement : c'est un oscillateur harmonique. On obtient :
- u(θ) = Acos(θ + φ) + B.
En revenant à l'expression de r, on a :
.
C'est bien l'expression d'une conique en coordonnées polaires, dont la nature exacte - parabole, hyperbole ou ellipse - dépend des conditions initiales.
![]() |
Portail de la physique – Accédez aux articles de Wikipédia concernant la physique. |