Méthodes de Runge-Kutta
Un article de Wikipédia, l'encyclopédie libre.
Cet article est une ébauche à compléter concernant l'analyse (branche des mathématiques), vous pouvez partager vos connaissances en le modifiant. |
Les méthodes de Runge-Kutta sont des méthodes d'analyse numérique d'approximation de solutions d'équations différentielles. Elles portent le nom des mathématiciens Carl Runge et Martin Wilhelm Kutta.
[modifier] La méthode de Runge-Kutta classique d'ordre quatre
C'est un cas particulier d'usage très fréquent, dénoté RK4.
Considérons le problème suivant :
La méthode RK4 est donnée par l'équation
où
L'idée est que la valeur suivante (yn+1) est approchée par la somme de la valeur actuelle (yn) et du produit de la taille de l'intervalle (h) par la pente estimée. La pente est obtenue par une moyenne pondérée de pentes :
- k1 est la pente au début de l'intervalle ;
- k2 est la pente au milieu de l'intervalle, en utilisant la pente k1 pour calculer la valeur de y au point tn + h/2 par le biais de la méthode d'Euler ;
- k3 est de nouveau la pente au milieu de l'intervalle, mais obtenue cette fois en utilisant la pente k2 pour calculer y;
- k4 est la pente à la fin de l'intervalle, avec la valeur de y calculée en utilisant k3.
Dans la moyenne des quatre pentes, un poids plus grand est donné aux pentes au point milieu.
La méthode RK4 est une méthode d'ordre 4, ce qui signifie que l'erreur commise à chaque étape est de l'ordre de h5, alors que l'erreur totale accumulée est de l'ordre de h4.
Ces formules sont aussi valables pour des fonctions à valeurs vectorielles.
[modifier] Voir aussi
Portail des mathématiques – Accédez aux articles de Wikipédia concernant les mathématiques. |