Polynôme aux inverses
Un article de Wikipédia, l'encyclopédie libre.
![]() |
Cet article est une ébauche à compléter concernant les mathématiques, vous pouvez partager vos connaissances en le modifiant. |
En algèbre, le polynôme aux inverses P’ associé à un polynôme P non nul sur un anneau est un polynôme défini par :
Une propriété interessante est que :
[modifier] Exemple
Soit P un polynôme non nul. Alors P est de degré d, fini, supérieur à 0, et il existe (an)n une suite de scalaires, tous nuls pour n>d. On peut ainsi écrire :
Alors le polynôme aux inverses de P est le polynôme :
[modifier] Réduction
L'application Φ qui à un polynôme P associe son polynôme aux inverses est diagonalisable, et de valeurs propres 1 et -1 (Preuve : le polynôme X² - 1 l'annule). En particulier, si le degré de P est pair, la dimension des deux sous-espaces propres de Φ est identique, égale à . Si le degré de P est impair, en notant n = 2p + 1, alors :
, et
.
[modifier] Voir aussi
![]() |
Portail des mathématiques – Accédez aux articles de Wikipédia concernant les mathématiques. |