New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Generalized extreme value distribution - Wikipedia, the free encyclopedia

Generalized extreme value distribution

From Wikipedia, the free encyclopedia

Generalized extreme value
Probability density function
Cumulative distribution function
Parameters \mu \in [-\infty,\infty] \, location (real)

\sigma \in (0,\infty]    \, scale (real)
\xi\in [-\infty,\infty]  \, shape (real)

Support x>\mu-\sigma/\xi\,\;(\xi > 0)

x<\mu-\sigma/\xi\,\;(\xi < 0)
x \in [-\infty,\infty]\,\;(\xi = 0)

Probability density function (pdf) \frac{1}{\sigma}(1\!+\!\xi z)^{-1/\xi-1}e^{-(1\!+\!\xi z)^{-1/\xi}}

where z=\frac{x-\mu}{\sigma}

Cumulative distribution function (cdf) e^{-(1+\xi z)^{-1/\xi}}
Mean \mu-\frac{\sigma}{\xi}+\frac{\sigma}{\xi}g_1

where gk = Γ(1 − kξ)

Median \frac{\ln^{-\xi}(2)-1}{\xi}
Mode \frac{(1+\xi)^{-\xi}-1}{\xi}
Variance \frac{\sigma^2}{\xi^2}(g_2-g_1^2)
Skewness \frac{-g_3+3g_1g_2-2g_1^3}{(g_2-g_1^2)^{3/2}}
Excess kurtosis \frac{g_4-4g_1g_3+6g_2g_1^2-3g_1^4}{(g_2-g_1^2)^{2}}
Entropy
Moment-generating function (mgf)
Characteristic function

In probability theory and statistics, the generalized extreme value distribution (GEV) is a family of continuous probability distributions developed within extreme value theory to combine the Gumbel, Fréchet and Weibull families also known as type I, II and III extreme value distributions. Its importance arises from the fact that it is the limit distribution of the maxima of a sequence of independent and identically distributed random variables. Because of this, the GEV is used as an approximation to model the maxima of long (finite) sequences of random variables.

Contents

[edit] Specification

The generalized extreme value distribution has cumulative distribution function

F(x;\mu,\sigma,\xi) = \exp\left\{-\left[1+\xi\left(\frac{x-\mu}{\sigma}\right)\right]^{-1/\xi}\right\}

for 1 + ξ(x − μ) / σ > 0, where \mu\in\mathbb R is the location parameter, σ > 0 the scale parameter and \xi\in\mathbb R the shape parameter.

The density function is, consequently

f(x;\mu,\sigma,\xi) = \frac{1}{\sigma}\left[1+\xi\left(\frac{x-\mu}{\sigma}\right)\right]^{-1/\xi-1}
\exp\left\{-\left[1+\xi\left(\frac{x-\mu}{\sigma}\right)\right]^{-1/\xi}\right\}

again, for 1 + ξ(x − μ) / σ > 0.

[edit] Mean, standard deviation, mode, skewness and kurtosis excess

\operatorname{E}(X) = \mu-\frac{\sigma}{\xi}+\frac{\sigma}{\xi}g_1
\operatorname{Var}(X) = \frac{\sigma^2}{\xi^2}(g_2-g_1^2)
\operatorname{Mode}(X) = \mu+\frac{\sigma}{\xi}[(1+\xi)^{-\xi}-1]

The skewness is

\operatorname{skewness}(X) = \frac{-g_3+3g_1g_2-2g_1^3}{(g_2-g_1^2)^{3/2}}

The kurtosis is:

\operatorname{kurtosis}(X) = \frac{g_4-4g_1g_3+6g_2g_1^2-3g_1^4}{(g_2-g_1^2)^{2}}


where gk = Γ(1 − kξ), k=1,2,3,4, and Γ(t) is Gamma function.


[edit] Link to Fréchet, Weibull and Gumbel families

The shape parameter ξ governs the tail behaviour of the distribution. The sub-families defined by \xi\to 0, ξ > 0 and ξ < 0 correspond, respectively, to the Gumbel, Fréchet and Weibull families, whose cumulative distribution functions are displayed below.

  • Gumbel or type I extreme value distribution
F(x;\mu,\sigma)=e^{-e^{-(x-\mu)/\sigma}}\;\;\; for\;\; x\in\mathbb R
  • Fréchet or type II extreme value distribution
F(x;\mu,\sigma,\alpha)=\begin{cases} 0 & x\leq \mu \\ e^{-((x-\mu)/\sigma)^{-\alpha}} & x>\mu \end{cases}
  • Weibull or type III extreme value distribution
F(x;\mu,\sigma,\alpha)=\begin{cases} e^{-(-(x-\mu)/\sigma)^{\alpha}} & x<\mu \\ 1 & x\geq \mu \end{cases}

where σ > 0 and α > 0.

Remark I: For reliability issues the Weibull distribution by itself is used with the variable t = μ − x, which gives a strictly positive support - in contrast to the use in extreme value theory.

Remark II: Note the differences in the ranges of interest for the three extreme value distributions: Gumbel is unlimited, Fréchet has a lower limit, while Weibull has an upper limit.

One can link the type I to types II and III the following way: if the cumulative distribution function of some random variable X is of type II: F(x;0,σ,α), then the cumulative distribution function of lnX is of type I, namely F(x;lnσ,1 / α). Similarly, if the cumulative distribution function of X is of type III: F(x;0,σ,α), the cumulative distribution function of lnX is of type I: F(x;lnσ, − 1 / α).

[edit] Extremal types theorem

Credit for the extremal types theorem (or convergence to types theorem) is given to Gnedenko (1948), previous versions were stated by Fisher and Tippett in 1928 and Fréchet in 1927.

Let X_1,X_2\ldots be a sequence of independent and identically distributed random variables, let M_n=\max\{X_1,\ldots,X_n\}. If two sequences of real numbers an,bn exist such that an > 0 and

\lim_{n \to \infty}P\left(\frac{M_n-b_n}{a_n}\leq x\right) = F(x)

then if F is a non degenerate distribution function, it belongs to either the Gumbel, the Fréchet or the Weibull family.

Clearly, the theorem can be reformulated saying that F is a member of the GEV family.

It is worth noting that the result, which is stated for maxima, can be applied to minima by taking the sequence Xn instead of the sequence Xn.

For the practical application this theorem means: For samples taken from a well behaving, arbitrary distribution X the resulting extreme value distribution Mn can be approximated and parametrised with the extreme value distribution with the appropriate support.

Thus the role of extremal types theorem for maxima is similar to that of central limit theorem for averages. The latter states that the limit distribution of arithmetic mean of a sequence Xn of random variable is the normal distribution no matter what the distribution of the Xn, The extremal types theorem is similar in scope where maxima is substituted for average and GEV distribution is substituted for normal distribution.

[edit] References

  • Leadbetter, M.R., Lindgreen, G. and Rootzén, H. (1983). Extremes and related properties of random sequences and processes. Springer-Verlag. ISBN 0-387-90731-9. 
  • Resnick, S.I. (1987). Extreme values, regular variation and point processes. Springer-Verlag. ISBN 0-387-96481-9. 
  • Coles, Stuart (2001). An Introduction to Statistical Modeling of Extreme Values,. Springer-Verlag. ISBN 1-85233-459-2. 
Image:Bvn-small.png Probability distributionsview  talk  edit ]
Univariate Multivariate
Discrete: BenfordBernoullibinomialBoltzmanncategoricalcompound PoissondegenerateGauss-Kuzmingeometrichypergeometriclogarithmicnegative binomialparabolic fractalPoissonRademacherSkellamuniformYule-SimonzetaZipfZipf-Mandelbrot Ewensmultinomialmultivariate Polya
Continuous: BetaBeta primeCauchychi-squareDirac delta functionErlangexponentialexponential powerFfadingFisher's zFisher-TippettGammageneralized extreme valuegeneralized hyperbolicgeneralized inverse GaussianHalf-LogisticHotelling's T-squarehyperbolic secanthyper-exponentialhypoexponentialinverse chi-square (scaled inverse chi-square)• inverse Gaussianinverse gamma (scaled inverse gamma) • KumaraswamyLandauLaplaceLévyLévy skew alpha-stablelogisticlog-normalMaxwell-BoltzmannMaxwell speednormal (Gaussian)normal inverse GaussianParetoPearsonpolarraised cosineRayleighrelativistic Breit-WignerRiceshifted GompertzStudent's ttriangulartype-1 Gumbeltype-2 GumbeluniformVariance-GammaVoigtvon MisesWeibullWigner semicircleWilks' lambda Dirichletinverse-WishartKentmatrix normalmultivariate normalmultivariate Studentvon Mises-FisherWigner quasiWishart
Miscellaneous: Cantorconditionalexponential familyinfinitely divisiblelocation-scale familymarginalmaximum entropyphase-typeposteriorpriorquasisamplingsingular

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu