New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Greeks (finance) - Wikipedia, the free encyclopedia

Greeks (finance)

From Wikipedia, the free encyclopedia

In mathematical finance, the Greeks are the quantities representing the market sensitivities of options or other derivatives. Each "Greek" measures a different aspect of the risk in an option position, and corresponds to a parameter on which the value of an instrument or portfolio of financial instruments is dependent. The name is used because the parameters are often denoted by Greek letters.

Contents

[edit] Use of the Greeks

The Greeks are vital tools in risk management. Each Greek (with the exception of theta - see below) represents a specific measure of risk in owning an option, and option portfolios can be adjusted accordingly ("hedged") to achieve a desired exposure; see for example Delta hedging.

As a result, a desirable property of a model of a financial market is that it allows for easy computation of the Greeks. The Greeks in the Black-Scholes model are very easy to calculate and this is one reason for the model's continued popularity in the market.

[edit] The Greeks

  • The delta measures sensitivity to price. The Δ of an instrument is the mathematical derivative of the value function with respect to the underlying price, \Delta = \frac{\partial V}{\partial S}.
  • The gamma measures second order sensitivity to price. The Γ is the second derivative of the value function with respect to the underlying price, \Gamma = \frac{\partial^2 V}{\partial S^2}.
  • The speed measures third order sensitivity to price. The speed is the third derivative of the value function with respect to the underlying price, \frac{\partial^3 V}{\partial S^3}.
  • The vega, which is not a Greek letter (ν, nu is used instead), measures sensitivity to volatility. The vega is the derivative of the option value with respect to the volatility of the underlying, \nu=\frac{\partial V}{\partial \sigma}. The term kappa, κ, is sometimes used instead of vega, and some trading firms have also used the term tau, τ.
  • The theta measures sensitivity to the passage of time (see Option time value). Θ is minus the derivative of the option value with respect to the amount of time to expiry of the option, \Theta = -\frac{\partial V}{\partial T}.
  • The rho measures sensitivity to the applicable interest rate. The ρ is the derivative of the option value with respect to the risk free rate, \rho = \frac{\partial V}{\partial r}.
  • Less commonly used:
    • The lambda λ is the percentage change in option value per change in the underlying price, or \lambda = \frac{\partial V}{\partial S}\times\frac{1}{V}.
    • The vega gamma or volga measures second order sensitivity to implied volatility. This is the second derivative of the option value with respect to the volatility of the underlying, \frac{\partial^2 V}{\partial \sigma^2}.
    • The vanna measures cross-sensitivity of the option value with respect to change in the underlying price and the volatility, \frac{\partial^2 V}{\partial S \partial \sigma}, which can also be interpreted as the sensitivity of delta to a unit change in volatility.
    • The delta decay, or charm, measures the time decay of delta, \frac{\partial \Delta}{\partial T} = \frac{\partial^2 V}{\partial S \partial T}. This can be important when hedging a position over a weekend.
    • The color measures the sensitivity of the charm, or delta decay to the underlying asset price, \frac{\partial^3 V}{\partial S^2 \partial T}. It is the third derivative of the option value, twice to underlying asset price and once to time.

[edit] Black-Scholes

The Greeks under the Black-Scholes model are calculated as follows, where φ (phi) is the standard normal probability density function and Φ is the standard normalcumulative distribution function. Note that the gamma and vega formulas are the same for calls and puts.

For a given: Stock Price, S \,, Strike Price, K \,, Risk-Free Rate, r \,, Annual Dividend Yield, q \,, Time to Maturity, \tau = T-t \,, and Historic Volatility, \sigma \,...

Calls Puts
delta e^{-q \tau} \Phi(d_1) \, -e^{-q \tau} \Phi(-d_1) \,
gamma e^{-q \tau} \frac{\phi(d_1)}{S\sigma\sqrt{\tau}} \,
vega Se^{-q \tau} \phi(d_1) \sqrt{\tau} \,
theta -e^{-q \tau} \frac{S \phi(d_1) \sigma}{2 \sqrt{\tau}} - rKe^{-r \tau}\Phi(d_2) + qSe^{-q \tau}\Phi(d_1) \, -e^{-q \tau} \frac{S \phi(d_1) \sigma}{2 \sqrt{\tau}} + rKe^{-r \tau}\Phi(-d_2) - qSe^{-q \tau}\Phi(-d_1) \,
rho K \tau e^{-r \tau}\Phi(d_2)\, -K \tau e^{-r \tau}\Phi(-d_2) \,
volga Se^{-q \tau} \phi(d_1) \sqrt{\tau} \frac{d_1 d_2}{\sigma} = Vega  \frac{d_1 d_2}{\sigma} \,
vanna -e^{-q \tau} \phi(d_1) \frac{d_2}{\sigma} \, = \frac{Vega}{S}\left[1 - \frac{d_1}{\sigma\sqrt{\tau}} \right]\,
charm -qe^{-q \tau} \Phi(d_1) + e^{-q \tau} \phi(d_1) \frac{2(r-q) \tau - d_2 \sigma \sqrt{\tau}}{2\tau \sigma \sqrt{\tau}} \, qe^{-q \tau} \Phi(-d_1) - e^{-q \tau} \phi(d_1) \frac{2(r-q) \tau - d_2 \sigma \sqrt{\tau}}{2\tau \sigma \sqrt{\tau}} \,
color -e^{-q \tau} \frac{\phi(d_1)}{2S\tau \sigma \sqrt{\tau}} \left[2q\tau + 1 + \frac{2(r-q) \tau - d_2 \sigma \sqrt{\tau}}{2\tau \sigma \sqrt{\tau}}d_1 \right] \,
dual delta -e^{-r \tau} \Phi(d_2) \, e^{-r \tau} \Phi(-d_2) \,
dual gamma e^{-r \tau} \frac{\phi(d_2)}{K\sigma\sqrt{\tau}} \,

where

d_1 = \frac{\ln(S/K) + (r - q + \sigma^2/2)T}{\sigma\sqrt{T}}
d_2 = \frac{\ln(S/K) + (r - q - \sigma^2/2)T}{\sigma\sqrt{T}} = d_1 - \sigma\sqrt{T}
\phi(x) = \frac{e^{- \frac{x^2}{2}}}{\sqrt{2 \pi}}
\Phi(x) = \int_{-\infty}^x \frac{e^{- \frac{y^2}{2}}}{\sqrt{2 \pi}} \,dy = \int_{-x}^{\infty} \frac{e^{- \frac{y^2}{2}}}{\sqrt{2 \pi}} \,dy

[edit] See also

[edit] External links

[edit] Discussion

[edit] Greeks for specific option models

[edit] Calculation

In other languages

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu