New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Hopf bundle - Wikipedia, the free encyclopedia

Hopf bundle

From Wikipedia, the free encyclopedia

In mathematics, the Hopf bundle (or Hopf fibration), named after Heinz Hopf, is an important example of a fiber bundle. It has base space S2, total space S3, and fiber S1:

S^1 \hookrightarrow S^3 \to S^2 \,\!

It was discovered by Heinz Hopf in 1931. The Hopf bundle also gives an example of a principal bundle by identifying the fiber with the circle group.

Key-Ring Model of the Hopf Fibration.
Key-Ring Model of the Hopf Fibration.

To construct the Hopf bundle, consider S3 as the subset of all (z0, z1) in C2 such that |z0|2 + |z1|2 = 1. Identify (z0, z1) with (λz0, λz1) where λ is a complex number with norm one. Then the quotient of S3 by this equivalence relation is the complex projective line, CP1, also known as the Riemann sphere S2. Clearly the fiber of a point is S1, and it is easy to show that local triviality holds, so that the Hopf bundle is a fiber bundle. The key-ring model in the picture can be mathematically described as a stereographic projection of S3 into R3. It does not show all the circles, of course (they would fill all of R3) but rather only those lying on a common torus in S3

Another way to look at the Hopf bundle is to regard S3 as the special unitary group SU(2). The group SU(2) is isomorphic to Spin(3) and so acts transitively on S2 by rotations. The stabilizer of a point is isomorphic to the circle group U(1). According to standard Lie group theory, SU(2) is then a principal U(1)-bundle over the left coset space SU(2)/U(1) which is diffeomorphic to the 2-sphere. The fibers in this bundle are just the left cosets of U(1) in SU(2).

In quantum mechanics, the Riemann sphere is known as the Bloch sphere, and the Hopf fibration describes the topological structure of a quantum mechanical two-level system or qubit. Similarly, the topology of a pair of entangled two-level systems is given by the Hopf fibration

S^3 \hookrightarrow S^7\to S^4 \,\!.

Contents

[edit] Geometry

We may also interpret the bundle projection S3S2 in terms of unit quaternions and 3D rotations. Let a point on S3 have coordinates (w,x,y,z). Interpret this as a quaternion, q, with unit quaternion norm,

q = w+\bold{i}x+\bold{j}y+\bold{k}z ; \qquad \operatorname{N}(q) = 1 , \,\!

where N(q) = qq* = w2+x2+y2+z2. Interpret a vector (a,b,c) in R3 as the quaternion

p = \bold{i}a+\bold{j}b+\bold{k}c . \,\!

Then, as is well-known since Cayley (1845), the mapping

p \mapsto q p q^* \,\!

is a rotation in R3, which we can express in matrix form as

\begin{bmatrix} 1-2(y^2+z^2) & 2(xy - wz) & 2(xz+wy)\\ 2(xy + wz) & 1-2(x^2+z^2) & 2(yz-wx)\\ 2(xz-wy) & 2(yz+wx) & 1-2(x^2+y^2) \end{bmatrix} .

Here we find an explicit real formula for the bundle projection. For, the fixed unit vector along the z axis, (0,0,1), rotates to another unit vector,

\Big(2(xz+wy) , 2(yz-wx) , 1-2(x^2+y^2)\Big) , \,\!

which is a continuous function of (w,x,y,z). That is, the image of q is where it aims the z axis. The fiber for a given point on S2 consists of all those unit quaternions that aim there.

To write an explicit formula for a fiber, we may proceed as follows. Multiplication of unit quaternions produces composition of rotations, and

q_{\theta} = \cos \theta + \bold{k} \sin \theta \,\!

is a rotation by 2θ around the z axis. As θ varies, this sweeps out a great circle of S3, our prototypical fiber. So long as the base point, (a,b,c), is not the antipode, (0,0,−1), the quaternion

q_{(a,b,c)} = \frac{1}{\sqrt{2(1+c)}}(1+c-\bold{i}b+\bold{j}a)

will aim there. Thus the fiber of (a,b,c) is given by quaternions of the form q(a,b,c)qθ, which are the S3 points

\frac{1}{\sqrt{2(1+c)}}   \Big((1+c) \cos (\theta ),   a \sin (\theta )-b \cos (\theta ),   a \cos (\theta )+b \sin (\theta ),   (1+c) \sin (\theta )\Big) . \,\!

Since multiplication by q(a,b,c) acts as a rotation of quaternion space, the fiber is not merely a topological circle, it is a geometric circle. The final fiber, for (0,0,−1), can be given by using q(0,0,−1) = i, producing

\Big(0,\cos (\theta ),-\sin (\theta ),0\Big) , \,\!

which completes the bundle.

The bundle geometry induces a remarkable structure in R3, which in turn illuminates the topology of the bundle. Stereographic projection of S3 to R3 preserves circles and fills space. The fibers of a circle of latitude on S2 form a torus in S3, and the individual fibers map to Villarceau circles in R3. There are two minor exceptions. One is the fiber containing the projection point, which maps to a line. The other is the fiber through the opposite point, where the torus shrinks to a unit circle perpendicular to, and centered on, the line. We can easily show (Lyons 2003) that every other fiber image encircles the line as well, and so by symmetry each circle is linked through every circle, both in R3 and in S3.

[edit] Hopf map

The Hopf map p : S3S2 is defined by

p (z0, z1) = (|z0|2 - |z1|2, 2z0z1*)

the first component is a real number, the second complex, so together they define a point in R3. It's easy to check that if |z0|2 + |z1|2 = 1, then p (z0, z1) lies on the unit 2-sphere. Conversely, if p (z0, z1) = p (z2, z3) then (z2, z3) = (λz0, λz1) for some unit λ.

Hopf proved that the Hopf map has Hopf invariant 1, and therefore is not null-homotopic, but is of infinite order in π3(S2). In fact, the Hopf map generates π3(S2).

[edit] Generalizations

More generally, the Hopf construction gives circle bundles p : S2n+1CPn over complex projective space. This is actually the restriction of the tautological line bundle over CPn to the unit sphere in Cn+1.

[edit] Real, quaternionic, and octonionic Hopf bundles

One may also regard S1 as lying in R2 and factor out by unit real multiplication to obtain RP1 = S1 and a fiber bundle S1S1 with fiber S0. Similarly, one can regard S4n−1 as lying in Hn (quaternionic n-space) and factor out by unit quaternion (= S3) multiplication to get HPn. In particular, since S4 = HP1, there is a bundle S7S4 with fiber S3. A similar construction with the octonions yields a bundle S15S8 with fiber S7. These bundles are sometimes also called Hopf bundles. As a consequence of Adams' theorem, these are the only fiber bundles with spheres as total space, base space, and fiber.

[edit] References

In other languages

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu