Operatore differenziale
Da Wikipedia, l'enciclopedia libera.
![]() |
Questa voce riguardante un argomento di matematica non è ancora stata tradotta completamente dalla lingua inglese. Terminala o riscrivila tu.
Nota: il testo da tradurre potrebbe essere nascosto: vai in modifica per visualizzarlo. |
In matematica un operatore differenziale è un operatore lineare definito come una funzione dell'operatore differenziazione.
Indice |
[modifica] Notazioni
Il più comune operatore differenziale è la derivata. Comuni notazioni sono:
quando la variabile di differenziazione è chiara, e
quando la variabile è dichiarata esplicitamente.
Per le derivate successive
La notazione D è accreditata a Oliver Heaviside, che considerava gli operatori differenziali della forma
nello studio delle equazioni differenziali.
Uno dei più frequenti operatori differenziali è il laplaciano, definito come
Un altro operatore differenziale è l'operatore Θ, definito come
[modifica] Proprietà degli operatori differenziali
Molte proprietà degli operatori differenziali sono conseguenza delle proprietà delle derivate, che sono lineari
- D(f + g) = (Df) + (Dg)
- D(af) = a(Df)
dove f e g sono funzioni e a è una costante.
Ogni polinomiale in D con coefficienti funzionali è ancora un operatore differenziale. Si possono comporre operatori differenziali con la regola
- (D1oD2)(f) = D1 [D2(f)].
Ogni coefficiente funzionale dell'operatore D2 deve essere differenziabile tante volte quanto l'operatore D1 richiede. Per ottenere un anello di tali operatori bisogna assumere che siano usate derivate di ogni ordine. Inoltre questo anello non è commutativo: un operatore gD non è in generale uguale a Dg. Per esempio la relazione semplice in meccanica quantistica
- Dx − xD = 1.
Il sottoanello di operatori che sono polinomiali in D con coefficienti costanti è invece commutativo. Può essere caratterizzato in un altro modo: esso consiste negli operatori invarianti per traslazione.
[modifica] Più variabili
La stessa costruzione può essere usata con le derivate parziali.
[modifica] Descrizione indipendente dalle coordinate
In geometria differenziale e in geometria algebrica è spesso conveniente avere una descrizione degli operatori indipendente dalle coordinate.