Relazione simmetrica
Da Wikipedia, l'enciclopedia libera.
In matematica, una relazione binaria R in un insieme X è simmetrica se e solo se, presi due elementi qualsiasi a e b, vale che se a è in relazione con b allora anche b è in relazione con a. In simboli:
Ad esempio, "è sposato/a con" è una relazione simmetrica, mentre "è figlio di" non lo è.
Una relazione di simmetria che è anche transitiva e riflessiva è una relazione di equivalenza.
[modifica] Relazioni asimmetriche
Una relazione R in X è asimmetrica se e solo se, presi comunque due elementi a e b in X, se a è in relazione con b allora b non è in relazione con a. In simboli:
Si noti che dire che una relazione non è simmetrica non equivale a dire che è asimmetrica; l'asimmetria è una condizione più forte della semplice non simmetria, pertanto esistono delle relazioni che non sono né simmetriche né asimmetriche.
[modifica] Relazioni antisimmetriche
Una relazione R in X è detta invece antisimmetrica se, presi comunque due elementi a e b in X, se a è in relazione con b e b è in relazione con a, allora a = b. In simboli:
Un esempio di relazione antisimmetrica può essere "è minore o uguale a", infatti l'unico caso in cui valga e
è che a e b siano uguali. Anche la disuguaglianza stretta è antisimmetrica; essendo infatti a < b e b < a impossibile, l'antisimmetria in questa relazione è una verità vuota.
Una relazione antisimmetrica che è anche transitiva e riflessiva è una relazione d'ordine debole (detta anche relazione d'ordine parziale, in inglese poset).
Dire che una relazione è antisimmetrica e irriflessiva è equivalente a dire che è asimmetrica.
Si noti che l'antisimmetria non è l'opposto della simmetria. Ci sono infatti relazione che sono simmetriche e non antisimmetriche (come la congruenza modulo n), relazioni antisimmetriche e non simmetriche ("è minore o uguale a"), ma anche relazioni sia simmetriche che antisimmetriche (come l'uguaglianza (matematica)) o né simmetriche né antisimmetriche (la divisibilità fra interi).