バシチェック・モデル
出典: フリー百科事典『ウィキペディア(Wikipedia)』
バシチェック・モデル〔Vasicek model〕とは、数理ファイナンスにおいて利子率の時間的変動を記述する数理モデルの一つである。 短期利子率を扱う単因子モデルの一つであり、利子率の変動を市場リスクという単一の要因で説明する。 バシチェック・モデルは、金利デリバティブの評価に使用することが可能である。 1977年に、チェコの数学者 Oldrich Vasicek により導入された。
バシチェック・モデルは、瞬間利子率が以下の確率微分方程式に従うとする。
- drt = a(b − rt) + σdWt
ここに a、b、σ は正の定数であり、Wt は、無作為な市場リスク因子をモデル化したウィーナー過程である。 標準偏差媒介変数 σ は、利子率のボラティリティを決定する。 バシチェック・モデルは、Ornstein-Uhlenbeck 確率過程である。
バシチェック・モデルは、平均回帰性を備えた始めての利子率モデルであった。 平均回帰性は、利子率を他の金融価格と異なるものとする主要な特性である。 例えば株価と異なり、利子率は無限に上昇し続けることはできない。 利子率が余りに高い水準になると経済活動が妨げられ、それにより利子率の低下が推進されるからである。 同様に、利子率は無限に低下し続けることもできない。 その結果、利子率はある制約された範囲を動き、長期的に観測される値に復帰する傾向を見せるのである。
ドリフト因子 a(b − rt) は、時刻 t における利子率の瞬間的な期待変動を示している。 媒介変数 b は、利子率が復帰する方向を示す長期的な均衡値を示している。 従って、衝撃がない状況(dWt = 0)では、利子率は rt = b と定数になる。 媒介変数 a は調整速度を支配しており、長期的な均衡値の周辺での安定性を保証するため、正値である必要がある。 例えば、rt が b を下回ると、正値の a によりドリフト項 a(b − rt) は正値になり、 利子率が上向きに(均衡に向かって)動く傾向を引き起こす。
主な欠点は、バシチェック・モデルの下では、利子率が負値になることが理論的に可能であるが、これは望ましくない特性である。 この欠点は、コックス・インガーソル・ロス・モデルでは克服された。 バシチェック・モデルは、ハル・ホワイト・モデルでさらに拡張された。
[編集] 関連項目
[編集] 参考文献
- Hull, John C. (2003).Options, Futures and Other Derivatives. Upper Saddle River, NJ: Prentice Hall. ISBN 0-13-009056-5.
- Vasicek, Oldrich (1977). "An Equilibrium Characterisation of the Term Structure". Journal of Financial Economics 5: 177-188.