Magnesium/Teflon/Viton
From Wikipedia, the free encyclopedia
MTV is an acronym for pyrolants based on magnesium/Teflon®/Viton®. Teflon and Viton are trademarks of DuPont for polytetrafluoroethylene, C2F4, and vinylidenfluoride-hexafluoroisopropene-copolymer, (CH2CF2)n(CF(CF3)CF2)n.
Contents |
[edit] History
Pyrotechnic compositions based on magnesium/Teflon®/Viton®, aka MTV-compositions, have been in use since the 1950s as payloads in infrared decoy flare applications. See also Countermeasures. Derived from the acronym MTV is the expression "MTV-Flare" for pyrotechnic infrared decoy flares.
[edit] Chemistry
Whereas in conventional visual pyrotechnic illuminants sodium nitrate, NaNO3, is used as an oxidizer, in MTV compositions the polytetrafluoroethylene, (C2F4)n, acts as fluorine source. The very high reaction enthalpy, ΔRH, upon combustion of magnesium with PTFE is based on the formation of magnesium fluoride, having a very high negative enthalpy of formation ( ΔfHo = −1124 kJ mol−1):
- 2n Mg + (C2F4)n → 2n MgF2(s) + 2n C, ΔRH = −1438 kJ mol−1 (1)
As lots of carbon and much heat is released upon combustion of MTV the combustion flame can be described as a grey body of high emissivity [1].
Depending on stoichiometry, MTV displays varying burn rates and yields different reactions products. With constant Viton®-content the burn rate rises exponentially with rising magnesium content[2]. Nevertheless the burn rate of MTV, as is the case with many metallized pyrotechnic compositions is strongly dependent on the specific surface area of the metal fuel, that are particle morphology and dimensions. Generally magnesium powder having a high specific surface area will exhibit a higher burn rate than those having a smaller specific area. The main reactions products for MTV at Mg contents between 30 and 65 wt% magnesium fluoride, soot and vaporized magnesium [3].
For aerial decoy flares magnesium rich compositions are used with Mg contents between 55 and 65 wt%. At these stoichiometries only a part of the applied Mg reacts with the PTFE. The surplus Mg is vaporised and reacts with the atmospheric oxygen; likewise the thermally excited soot reacts with the atmospheric oxygen (Eq. 2 & 3)
- m Mg + (C2F4)n → 2n MgF2(s) + (m − 2n) Mg(g) + 2n C, m ≥ 2n (2)
- (m − 2n) Mg(g) + 2n C → (m − 2n) MgO(s) + 2n CO2 (3)
[edit] Safety
Pyrotechnic compositions based on magnesium/polytetrafluoroethylene with stoichiometries from 25 wt% to 90 wt% magnesium are according to German explosive legislations SprengG and standardized test procedures Steel sleeve test and BAM impact test explosive substances. Due to their sensitivity and their reaction behaviour these substances are categorized as group 1.1.2 [4]. MTV compositions explode at minimum confinenment (also self confinement) at relative low amounts. MTV compositions are sensitive toward thermal ignition. In addition MTV compositions in loose and pressed state are extraordinarily sensitive towards electrostatic discharges (ESD). Hence suitable measures have to be taken to avoid ESD while processing and handling of MTV.
[edit] Aerial decoy flare applications
Since aircraft and helicopters could (and still can) counter surface-to-air and air-to-air missiles as e.g. 1st generation SA-7 aka Strela-2, MTV has been a classified issue until the mid-1980s. It was not until 1997 that the U.S. government released a formerly classified invention, US 5 679 921, filing year: 1957, that originally described the properties and appications of MTV [5].
Although missile development has brought up seeker countermeasures against MTV flares there are still numerous systems fielded based on 1st Generation technology. Hence MTV flares are still not obsolete in fighting unknown threats. Together with advanced spectral flares (see countermeasures) they are part of the so-called "cocktail solution" [6]
[edit] References
- ^ [1]E.-C. Koch, A. Dochnahl, IR Emission Behaviour of Magnesium/Teflon/Viton (MTV) Compositions, Prop.,Expl.,Pyrotech. 25 2000, 37
- ^ [2]E.C. Koch, Development and Application of Magnesium/Teflon/Viton(MTV), Prop., Explos., Pyrotech. 27 2002, 262.
- ^ [3]E.C. Koch, Thermochemical and Combustion Behaviour of Magnesium/Teflon/Viton(MTV), Prop., Explos., Pyrotech. 27 2002, 340.
- ^ BGV B5 (VBG 55a) Explosivstoffe - Allgemeine Vorschrift, Jedermann-Verlag, 69021 Heidelberg, 2001.
- ^ [4]G.T. Hahn, P.G. Rivette, R. G. Weldon, Tracking Flare, U.S. Patent 5 679 921 1997, The United States of America as represented by the Secretary of the Navy.
- ^ [5]S. I. Erwin, "Smart" Flares Being Designed to Defeat Heat-Seeking Missiles, National Defense Magazine, December 2003, 88, 14.