Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions User:MathsIsFun - Wikipedia, the free encyclopedia

User:MathsIsFun

From Wikipedia, the free encyclopedia

en This user is a native speaker of English.
de-1 Dieser Benutzer hat grundlegende Deutschkenntnisse.
es-1 Este usuario puede contribuir con un nivel básico de español.
da-1 Denne bruger har et grundlæggende kendskab til dansk.
Other
prog-4 This user is an expert programmer.
This user's favourite colour is blue.

Contents

[edit] My Goal

My goal is to make mathematics more accessible and fun for everyone, and a big part of that is to explain mathematics using "easy language", but this requires a balancing act between precision and comprehension.

Let me explain: there is an educational concept called the spiral, which roughly means that a subject comes around again and again, always at a higher level. For example, a young person is taught that multiplication is just repeated addition. But then a year later the subject is revisited and multiplying by negatives is taught, then decimals come along ...

 This is an illustration of 2 times -3. Observe that our toddler is (according to him) moving forward two paces at a time, but he does this three times in a negative direction. If he were stepping backwards two paces at a time while facing forwards, that would be -2 times 3. Have a look at [Multiplying by Negatives] for a longer description.
This is an illustration of 2 times -3. Observe that our toddler is (according to him) moving forward two paces at a time, but he does this three times in a negative direction. If he were stepping backwards two paces at a time while facing forwards, that would be -2 times 3. Have a look at [Multiplying by Negatives] for a longer description.

[edit] The Website

And that is why I have developed (Math is Fun, or "Maths is Fun" in British English), to be a place where mathematics can be explained in a more "user-friendly" manner.

And like all people who embark on explaining Science to the general public I must at times leave out details which would only confuse, but it can be very hard to know where to draw the line.

So please forgive me, fellow Wikipedians, when I over-simplify! And correct me gently, but do correct me!

[edit] Contact Details

Use this Contact Form or leave a message on the Math is Fun Forum

[edit] My Test Area

\int_a^b f(x)\,dx

2x^2+5x+3=0\, x^2-3x=0\, 5x-3=0\,

\lim_{x\rightarrow 0}\frac{\sin(x)}{x} = 1

\sqrt{1-e^2}

\frac{\sqrt{2}}{3 \sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} =\frac{\sqrt{2} \times \sqrt{3}}{3 \times 3} =\frac{\sqrt{6}}{9}

x^\frac{1}{n} = \sqrt[n]{x}

27^\frac{1}{3} = \sqrt[3]{27} = 3

x^\frac{m}{n} = \sqrt[n]{x^m}

x^\frac{m}{n} = x^{(m \times \frac{1}{n})} = (x^m)^{\frac{1}{n}} = \sqrt[n]{x^m}

\sqrt{\tfrac{1}{2}} = \sqrt{\tfrac{2}{4}} = \frac{\sqrt{2}}{\sqrt{4}} = \frac{\sqrt{2}}{2}

\sqrt{\tfrac{3}{4}} = \frac{\sqrt{3}}{\sqrt{4}} = \frac{\sqrt{3}}{2}

x^\frac{2}{3} = \sqrt[3]{x^2}

10^{\,\!10^{100}}

10^{\,\!10^{10^{1000}}}

{{n!} \over {(n - r)!}} \times {{1} \over {r!}} = {{n!} \over {r!(n - r)!}}

{{n!} \over {r!(n - r)!}} = {n \choose r}

f(k;n,p)={n\choose k}p^k(1-p)^{n-k}

for k=0,1,2,\dots,n and where

{n\choose k}=\frac{n!}{k!(n-k)!}

f(3;10,0.5)={10\choose 3}0.5^3(1-0.5)^{(10-3)}={10\choose 3}0.5^30.5^7

{10\choose 3}=\frac{10!}{3!(10-3)!}=\frac{10!}{3!7!}=120

f(3;10,0.5)=120\times0.5^30.5^7=0.1171875

P(n,r) = {}^n\!P_r = {}_n\!P_r = \frac{n!}{(n-r)!}

C(n,r) = {}^n\!C_r = {}_n\!C_r = {n\choose r}=\frac{n!}{r!(n-r)!}

P(n,r) = \frac{n!}{(n-r)!}.

[edit] Test Area 2

\vec{i} \times \vec{j}=\vec{k}

A hexadecimal multiplication table
A hexadecimal multiplication table

nC_{r}=\frac{n!}{(n-r)!(r!)}

\sum_{k=1}^\infty 10^{-k!} = 0.110001000000000000000001000...

0 < |x-\frac{p}{q}| < \frac{1}{q^n}

A = \sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}\,

C = cos^{-1}(\frac{a^2+b^2-c^2}{2ab})

{{n + r - 1} \choose {r}} = {{(n + r - 1)!} \over {r!(n - 1)!}}

{{n + r - 1} \choose {r}} = {{n + r - 1} \choose {n - 1}} = {{(n + r - 1)!} \over {r!(n - 1)!}}

\varphi = \frac{1}{2} + \frac{\sqrt{5}}{2} = \frac{1 + \sqrt{5}}{2}

\varphi = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \cdots}}} = 1.618...

\frac{1}{3-\sqrt{2}}

\frac{1}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}} = \frac{3+\sqrt{2}}{3^2-(\sqrt{2})^2} = \frac{3+\sqrt{2}}{7}

\frac{2-\sqrt{x}}{4-x}

\frac{2-\sqrt{x}}{4-x} \times \frac{2+\sqrt{x}}{2+\sqrt{x}} = \frac{2^2-(\sqrt{2})^2}{(4-x)(2+\sqrt{x})} = \frac{(4-x)}{(4-x)(2+\sqrt{x})}  = \frac{1}{2+\sqrt{x}}

[edit] Test Area Sets

Help:Displaying_a_formula

f\colon \mathbb{N}\rightarrow\mathbb{N}

f\colon \{1,2,3,...\}\rightarrow\{1,2,3,...\}

f\colon \mathbb{R}\rightarrow\mathbb{R}

f\colon\,x\mapsto x^2

From Set-builder notation

Examples:

[edit] Test Area Limits

\lim_{x\to1} \frac{x^2-1}{x-1} = 2

\lim_{x\to1} \frac{x^2-1}{x-1} = \lim_{x\to1} \frac{(x-1)(x+1)}{x-1} = \lim_{x\to1} (x+1)

\lim_{x\to1} (x+1) = 1+1 = 2

\frac{x^2-1}{x-1} = \frac{(x-1)(x+1)}{x-1} = x+1

\lim_{n\to\infty} \left( 1 + \frac{1}{n} \right)^n = e

\lim_{x\to10} \frac{x}{2}= 5

\lim_{x\to4} \frac{2-\sqrt{x}}{4-x}

\frac{2-\sqrt{x}}{4-x} \times \frac{2+\sqrt{x}}{2+\sqrt{x}} = \frac{2^2-(\sqrt{x})^2}{(4-x)(2+\sqrt{x})} = \frac{(4-x)}{(4-x)(2+\sqrt{x})}  = \frac{1}{2+\sqrt{x}}

\frac{2-\sqrt{x}}{4-x} \times \frac{2+\sqrt{x}}{2+\sqrt{x}}

\frac{2^2-(\sqrt{x})^2}{(4-x)(2+\sqrt{x})}

\frac{(4-x)}{(4-x)(2+\sqrt{x})}

\frac{1}{2+\sqrt{x}}

\lim_{x\to4} \frac{2-\sqrt{x}}{4-x} = \lim_{x\to4} \frac{1}{2+\sqrt{x}} = \frac{1}{2+\sqrt{4}} = \frac{1}{4}

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu