New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Nilpotent matrix - Wikipedia, the free encyclopedia

Nilpotent matrix

From Wikipedia, the free encyclopedia

In mathematics, a nilpotent matrix is an n×n square matrix M such that

M^q = 0\,

for some positive integer q. Similarly, a nilpotent transformation is a linear transformation L with Lq = 0 for some integer q.

These are special cases of a more general concept of nilpotence that applies not only to matrices and linear transformations but to members of rings.

Contents

[edit] Examples

Consider the following matrix:

N = \begin{bmatrix}  0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0  \end{bmatrix}.

This is an example of a 4×4 nilpotent matrix (in fact, matrices of this form are called shift matrices). Notice the non-zero superdiagonal. The characteristic feature of this matrix is:

N^2 =   \begin{bmatrix}                      0 & 0 & 1 & 0\\                     0 & 0 & 0 & 1\\                     0 & 0 & 0 & 0\\                     0 & 0 & 0 & 0                   \end{bmatrix}   ;\  N^3 =   \begin{bmatrix}                      0 & 0 & 0 & 1\\                     0 & 0 & 0 & 0\\                     0 & 0 & 0 & 0\\                     0 & 0 & 0 & 0                 \end{bmatrix}  ;\  N^4 =  \begin{bmatrix}                      0 & 0 & 0 & 0\\                     0 & 0 & 0 & 0\\                     0 & 0 & 0 & 0\\                     0 & 0 & 0 & 0                 \end{bmatrix}.

The super-diagonal keeps 'shifting' diagonally up, until one gets the null matrix.

The corresponding nilpotent transformation L : R4R4 is defined by:

L(x_1,x_2,x_3,x_4) = (x_2,x_3,x_4,0). \,

There is a classification theorem showing that this is typical: a nilpotent matrix is similar to a block matrix, with diagonal square blocks generalizing this type, and other blocks zero.

[edit] Properties

Let M be an n×n nilpotent matrix.

  • The smallest integer q such that Mq = 0 is smaller than or equal to n.
  • The matrix M is nilpotent if and only if its eigenvalues are all zero. Therefore the determinant and trace of M are both zero, and nilpotent matrices are not invertible.

[edit] Classification theorem

The above example is typical, as the following result shows. Every nilpotent matrix is similar to a block diagonal matrix

\begin{bmatrix}     N_1 & 0 & 0 & \ldots & 0 \\     0 & N_2 & 0 & \ldots & 0 \\    0 & 0 & N_3 & \ldots & 0 \\    \vdots & \vdots & \vdots & \ddots & \vdots \\    0 & 0 & 0 & \ldots & N_k  \end{bmatrix}

where the blocks Ni have ones on the superdiagonal and zeros everywhere else:

N_i = \begin{bmatrix}     0 & 1 & 0 & \ldots & 0 & 0 \\    0 & 0 & 1 & \ldots & 0 & 0 \\    \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\    0 & 0 & 0 & \ldots & 1 & 0 \\    0 & 0 & 0 & \ldots & 0 & 1 \\    0 & 0 & 0 & \ldots & 0 & 0 \end{bmatrix}.


This fact follows from the Jordan decomposition theorem, together with the result that every matrix similar to a nilpotent matrix is also nilpotent.

[edit] Flag of subspaces

A nilpotent transformation L on Rn naturally determines a flag of subspaces

\{0\} \subset \ker L \subset \ker L^2 \subset \ldots \subset \ker L^{q-1} \subset \ker L^q = U

and a signature

0 = n_0 < n_1 < n_2 < \ldots < q_{k-1} < q_k = n,\qquad n_i = \dim \ker N^i.

The signature characterizes L up to an invertible linear transformation. Furthermore, it satisfies the inequalities

n_{j+1} - n_j \leq n_j - n_{j-1}, \qquad \mbox{for all } j = 1,\ldots,q-1.

Conversely, any sequence of natural numbers satisfying these inequalities is the signature of a nilpotent transformation.

[edit] External links

In other languages

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu