Image:NumInt-MC.png
From Wikipedia, the free encyclopedia

Size of this preview: 800 × 600 pixel
Image in higher resolution (1200 × 900 pixel, file size: 16 KB, MIME type: image/png)
![]() | This is a file from the Wikimedia Commons. The description on its description page there is shown below. |
Description |
numerical intergration with monte carlo. new points are dark blue (navy), old points are skyblue. points/nodes are uniform distributed over the integration interval. the value of the integral tends to 3,32. |
---|---|
Source |
created with the help of GNU R, see source below |
Date |
13 Apr. 2006 |
Author | |
Permission |
Thomas Steiner put it under the GFDL |
R-source code:
a=0.5 b=2 cs=c("red","skyblue","navy","darkgrey") f<-function(x) { return( 0.9*sin(9*x^0.6+0.3)+x+0.9 ) } mc_plot<-function(n,new=1) { set.seed(6911) x=seq(a*0.6,b*1.05,length=700) if (n>0) { xi=sort((b-a)*runif(n)+a) } else { xi=NA } Xi=sort((b-a)*runif(new)+a) pts=sort(c(a,xi,Xi,b)) plot(x,f(x),type="n",ylim=range(f(x),0),xlab="",ylab="") polygon(c(pts,b,a),c(f(pts),0,0),col=cs[4], border=cs[2],lwd=2) for (i in xi) { segments(i,0,i,f(i),col=cs[2],lwd=3) } for (i in Xi) { segments(i,0,i,f(i),col=cs[3],lwd=3) } lines(x,f(x),col=cs[1],lwd=3) ##calcualte area (integral) area=0 for (p in 1:(length(pts)-1) ) { area <- area + (pts[p+1]-pts[p]) * (f(pts[p+1])+f(pts[p])) / 2 } text(x=0.45,y=3.2, labels=substitute(integral(f(x)*dx, A, B)%~~% AREA,list(A=a,B=b,AREA=format(area,digits=3))),cex=1.5,col=cs[4],pos=4) } png(filename = "NumInt-MC.png", width=1200, height=900, pointsize = 12) par(bg="grey90",mfrow=c(2,2), oma=c(0,0,3,0), cex.axis=0.85) mc_plot(n=0) mc_plot(n=1) mc_plot(n=2) mc_plot(n=3,new=5) title(main="Numerische Integration mit Monte Carlo (Trapezmethode)", outer=TRUE,cex.main=1.9) dev.off()
File links
The following pages on the English Wikipedia link to this file (pages on other projects are not listed):