New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Positive-definite matrix - Wikipedia, the free encyclopedia

Positive-definite matrix

From Wikipedia, the free encyclopedia

In linear algebra, a positive-definite matrix is a Hermitian matrix which in many ways is analogous to a positive real number. The notion is closely related to a positive-definite symmetric bilinear form (or a sesquilinear form in the complex case).

Contents

[edit] Equivalent formulations

Let M be an n × n Hermitian matrix. Denote the transpose of a vector a by aT, and the conjugate transpose by a * .

The matrix M is positive definite if and only if it satisfies any of the following properties:

1. For all non-zero vectors zCn,
\textbf{z}^{*} M \textbf{z} > 0.

Note that the quantity z * Mz is always real.

2. All eigenvalues λi of M are positive. Recall that any Hermitian M, by the spectral theorem, may be regarded as a real diagonal matrix D that has been re-expressed in some new coordinate system (i.e., M = P − 1DP for some unitary matrix P whose rows are orthonormal eigenvectors of M, forming a basis). So this characterization means that M is positive definite if and only if the diagonal elements of D (the eigenvalues) are all positive. In other words, in the basis consisting of the eigenvectors of M, the action of M is component-wise multiplication with a (fixed) element in Cn with positive entries.
3. The sesquilinear form
\langle \textbf{x},\textbf{y}\rangle = \textbf{x}^{*} M \textbf{y}

defines an inner product on Cn. (In fact, every inner product on Cn arises in this fashion from a Hermitian positive definite matrix.)

4. M is the Gram matrix of some collection of linearly independent vectors
\textbf{x}_1,\ldots,\textbf{x}_n \in \mathbb{C}^k

for some k. More precisely, M arises by defining each entry

M_{ij} = \langle \textbf{x}_i, \textbf{x}_j\rangle = \textbf{x}_i^{*} \textbf{x}_j.

The vectors xi may optionally be restricted to fall in Cn. In other words, M is of the form A*A where A is not necessarily square but must be injective in general.

5. All the following matrices have a positive determinant (the Sylvester criterion):
  • the upper left 1-by-1 corner of M
  • the upper left 2-by-2 corner of M
  • the upper left 3-by-3 corner of M
  • ...
  • M itself

In other words, all of the leading principal minors are positive. For positive semidefinite matrices, all principal minors have to be non-negative. The leading principal minors alone do not imply positive semidefiniteness, as can be seen from the example

\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}

These properties are equivalent: if a matrix satisfies one property, it satisfies them all.

For real symmetric matrices, these properties can be simplified by replacing \mathbb{C}^n with \mathbb{R}^n, and "conjugate transpose" with "transpose."

[edit] Quadratic forms

Echoing condition 3 above, one can also formulate positive-definiteness in terms of quadratic forms. Let K be the field R or C, and V be a vector space over K. A Hermitian form

B : V \times V \rightarrow K

is a bilinear map such that B(x, y) is always the complex conjugate of B(y, x). Such a function B is called positive definite if B(x, x) > 0 for every nonzero x in V.

[edit] Negative-definite, semidefinite and indefinite matrices

The n × n Hermitian matrix M is said to be negative-definite if

x^{*} M x < 0\,

for all non-zero x \in \mathbb{R}^n (or, equivalently, all non-zero x \in \mathbb{C}^n). It is called positive-semidefinite if

x^{*} M x \geq 0

for all x \in \mathbb{R}^n (or \mathbb{C}^n) and negative-semidefinite if

x^{*} M x \leq 0

for all x \in \mathbb{R}^n (or \mathbb{C}^n).

Equivalently, a matrix is negative-definite if all its eigenvalues are negative, it is positive-semidefinite if they are all greater than or equal to zero, and it is negative-semidefinite if they are all less than or equal to zero.

A matrix M is positive-semidefinite if and only if it arises as the Gram matrix of some set of vectors. In contrast to the positive-definite case, these vectors need not be linearly independent.

For any matrix A, the matrix A*A is positive semidefinite, and rank(A) = rank(A*A). Reversely, any positive semidefinite matrix M can be written as M = A*A; this is the Cholesky decomposition.

A Hermitian matrix which is neither positive- nor negative-semidefinite is called indefinite.

[edit] Further properties

If M is positive semi-definite, one sometimes writes M \geq 0 and if M is positive-definite one writes M > 0. This may be confusing, as sometimes nonnegative matrices are also denoted in this way. Our notion comes from functional analysis where positive definite matrices define positive operators.

For positive semi-definite matrices M,N we write M\geq N if M-N \geq 0, i.e. MN is positive semi-definite. Equivalently for M > N.

1.

Every positive definite matrix is invertible and its inverse is also positive definite. If M \geq N > 0 then N^{-1} \geq M^{-1} > 0.

2. If M is positive definite and r > 0 is a real number, then rM is positive definite.

If M and N are positive definite, then the sum M + N and the products MNM and NMN are also positive definite. If MN = NM, then MN is also positive definite.

3. If M = (mij) > 0 then the diagonal entries mii are real and positive. As a consequence tr(M) > 0. Furthermore
| m_{ij} | \leq \sqrt{m_{ii} m_{jj}} \leq \frac{m_{ii}+m_{jj}}{2}.


4. A matrix M is positive definite, if and only if there is a positive definite matrix B > 0 with B2 = M. One writes B = M1 / 2. This matrix B is unique (but only under the assumption B > 0). If M > N > 0 then M1 / 2 > N1 / 2 > 0.
5. If M,N > 0 then M\otimes N > 0. (Here \otimes denotes Kronecker product.)


6. For matrices M = (mij),N = (nij) write M\circ N for the entry-wise product of M and N, i.e. the matrix whose i,j entry is mijnij. Then M \circ N is the Hadamard product of M and N. If M,N > 0 then M\circ N > 0 and if M,N are real matrices, the following inequality, due to Oppenheim, holds:

\det(M\circ N) \geq (\det N) \prod_{i} m_{ii}

7. Let M > 0 and N hermitian. If MN+NM \geq 0 (MN + NM > 0) then N\geq 0 ( N > 0 ).
8. If M,N\geq 0 are real matrices then \text{tr}(MN)\geq 0.
9. If M > 0 is real, then there is a δ > 0 such that M\geq \delta I where I is the identity matrix.

[edit] Non-Hermitian matrices

A real matrix M may have the property that xTMx > 0 for all nonzero real vectors x without being symmetric. The matrix

\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}

provides an example. In general, we have xTMx > 0 for all real nonzero vectors x if and only if the symmetric part, (M + MT) / 2, is positive definite.

The situation for complex matrices may be different, depending on how one generalizes the inequality z*Mz > 0. If z*Mz is real for all complex vectors z, then the matrix M is necessarily Hermitian. So, if we require that z*Mz be real and positive, then M is automatically Hermitian. On the other hand, we have that Re(z*Mz) > 0 for all complex nonzero vectors z if and only if the Hermitian part, (M + M*) / 2, is positive definite.

In summary, the distinguishing feature between the real and complex case is that, a bounded positive operator on a complex Hilbert space is necessarily Hermitian, or self adjoint. The general claim can be argued using the polarization identity. That is no longer true in the real case.

There is no agreement in the literature on the proper definition of positive-definite for non-Hermitian matrices.

[edit] See also

[edit] References

  • Rajendra Bhatia. Positive definite matrices,. Princeton Series in Applied Mathematics, 2007. ISBN 978-0691129181.

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu