Pseudo-arc
From Wikipedia, the free encyclopedia
In point-set topology, the pseudo-arc is the simplest nondegenerate hereditarily indecomposable continuum. The following definitions are, with slight modifications, due to Wayne Lewis (see the references section below). Other definitions have appeared in papers by R.H. Bing and Edwin Moise; they yield homeomorphic spaces.
Contents |
[edit] Definitions
[edit] Chains
At the heart of the definition of the pseudo-arc is the concept of a chain, which is defined as follows:
- A chain is a finite collection of open sets
in a metric space such that
if and only if
The elements of a chain are called its links, and a chain is called an ε-chain if each of its links has diameter less than ε.
While being the simplest of the type of spaces listed above, the pseudo-arc is actually very complex. The concept of a chain being crooked (defined below) is what endows the pseudo-arc with its complexity. Informally, it requires a chain to follow a certain recursive zig-zag pattern in another chain. To 'move' from the mth link of the larger chain to the nth, the smaller chain must first move in a crooked manner from the mth link to the (n-1)th link, then in a crooked manner to the (m+1)th link, and then finally to the nth link.
More formally:
- Let
and
be chains such that
-
- each link of
is a subset of a link of
, and
- for any indices i, j, m, and n with
,
, and m < n − 2, there exist indices k and l with i < k < l < j (or i > k > l > j) and
and
- each link of
- Then
is crooked in
[edit] Pseudo-arc
For any collect C of sets, let C * denote the union of all of the elements of C. That is, let
The pseudo-arc is defined as follows:
- Let p and q be distinct points in the plane and
be a sequence of chains in the plane such that for each i,
-
- the first link of
contains p and the last link contains q,
- the chain
is a 1 / 2i-chain,
- the closure of each link of
is a subset of some link of
, and
- the chain
is crooked in
.
- the first link of
- Let
- Then P is a pseudo-arc.
[edit] External links
- Pseudoarc for the People - Ongoing art project based on the pseudoarc
[edit] References
- Bing, R.H. 1948. A Homogeneous Indecomposable Plane Continuum, Duke Mathematical Journal Volume 15, no. 3, 729–742.
- Lewis, Wayne. 1999. The Pseudo-Arc, Bol. Soc. Mat. Mexicana Volume 5, 25–77.
- Moise, Edwin. 1948. An Indecomposable Plane Continuum Which is Homeomorphic to Each of Its Nondegenerate Subcontinua, Transactions of the American Mathematical Society Volume 63, no. 3, 581–594.