Variância
Origem: Wikipédia, a enciclopédia livre.
Na teoria da probabilidade e na estatística, a variância de uma variável aleatória é uma medida da sua dispersão estatística, indicando quão longe em geral os seus valores se encontram do valor esperado.
A variância de uma variável aleatória real é o seu segundo momento central e também o seu segundo cumulante (os cumulantes só diferem dos momentos centrais a partir do 4º grau, inclusive).
Índice |
[editar] Definição
Se μ = E(X) é o valor esperado (média) da variável aleatória X, então a variância é
Isto é, é o valor esperado do quadrado do desvio de X da sua própria média. Em linguagem comum isto pode ser expresso como "A média do quadrado da distância de cada ponto até à média". É assim a "média do quadrado dos desvios". A variância da variável aleatória "X" é geralmente designada por ,
, ou simplesmente σ2.
Notar que a definição acima pode ser usada quer para variáveis aleatórias discretas, quer para contínuas.
Muitas distribuições, tais como a distribuição Cauchy, não têm variância porque o integral relevante diverge. Em particular, se uma distribuição não tem valores esperados, ela também não tem variância. O contrário não é verdadeiro: há distribuições para as quais existe valor esperado mas não existe variância.
[editar] Propriedades
Se a variância é definida, podemos concluir que ela nunca é negativa, porque os quadrados são sempre positivos ou nulos. A unidade de variância é o quadrado da unidade de observação. Por exemplo, a variância de um conjunto de alturas medidas em centimetros será dada em centimetros quadrados. Este facto é inconveniente e levou muitos estatísticos a usar a raiz quadrada da variância, conhecida como o desvio padrão, como um sumário da dispersão.
Pode ser provado facilmente a partir da definição que a variância não depende do valor médio μ. Isto é, se a variável é "deslocada" por uma quantidade b ao tomarmos X+b, a variância da variável aleatória resultante permanece inalterada. Por contraste, se a variável for multiplicada por um factor de escala a, a variância é então multiplicada por a2. Mais formalmente, se a e b forem constantes reais e X uma variável aleatória cuja variância está definida, então:
Outra fórmula para a variância que se deduz de forma simples a partir da definição acima é:
Na prática usa-se muito frequentemente esta fórmula para calcular mais rapidamente a variância.
Uma razão para o uso da variância em preferência a outras medidas de dispersão é que a variância da soma (ou diferença) de variáveis aleatórias independentes é a soma das suas variâncias. Uma condição não tão estricta, chamada de incorrelação (uncorrelatedness) também é suficiente. Em geral,
Aqui é a covariância, a qual é zero para variáveis aleatórias não correlacionadas.
[editar] Variância da população e variância da amostra
Em estatística, o conceito de variância também pode ser usado para descrever um conjunto de observações. Quando o conjunto das observações é uma população, é chamada de variância da população. Se o conjunto das observações é (apenas) uma amostra estatística, chamamos-lhe de variância amostral (ou variância da amostra).
A variância da população de uma população yi onde i = 1, 2, ...., N é dada por
onde μ é a média da população. Na prática, quando lidando com grandes populações, é quase sempre impossível achar o valor exacto da variância da população, devido ao tempo, custo e outras restrições aos recursos.
Um método comum de estimar a variância da população é através da tomada de amostras. Quando estimando a variância da população usando n amostras aleatórias xi onde i = 1, 2, ..., n, a fórmula seguinte é um estimador não enviesado:
onde é a média da amostra.
Notar que o denominador n-1 acima contrasta com a equação para a variância da população. Uma fonte de confusão comum é que o termo variância da amostra e a notação s2 pode referir-se quer ao estimador não enviesado da variância da população acima como também àquilo que é em termos estrictos, a variância da amostra, calculada usando n em vez de n-1.
Intuitivamente, o cálculo da variância pela divisão por n em vez de n-1 dá uma sub-estimativa da variância da população. Isto porque usamos a média da amostra como uma estimativa da média da população μ, o que não conhecemos. Na prática, porém, para grandes n, esta distinção é geralmente muito pequena.
[editar] Generalizações
Se X é uma variável aleatória vectorial, com valores em Rn, e considerado como um vector coluna, então a generalização natural da variância é E[(X − μ)(X − μ)T], onde μ = E(X) e XT é a transposta de X, e logo um vector-linha. A variância é uma matriz quadrada não-negativa definida, referida geralmente como a matriz covariância.
Se X é uma variável aleatória de valores complexos, então a sua variância é E[(X − μ)(X − μ)*], onde X* é o conjugado complexo de X. Esta variância, assim como no caso real, é uma matriz quadrada não-negativa definida, cuja diagonal são números reais não-negativos.
[editar] História do conceito
O termo variância foi introduzido por Ronald Fisher num ensaio de 1918 intitulado de The Correlation Between Relatives on the Supposition of Mendelian Inheritance.
O conceito de variância é análogo ao conceito de momento de inércia em mecânica clássica.