Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Гироскоп — Википедия

Гироскоп

Материал из Википедии — свободной энциклопедии

Не следует путать с термином «гороскоп».
Иллюстрация к основному свойству 3х-степенного гироскопа.
Иллюстрация к основному свойству 3х-степенного гироскопа.

Гироско́п — устройство, способное измерять изменение углов ориентации связанного с ним тела относительно инерциальной системы координат.

Схема простейшего механического гироскопа в карданном подвесе
Схема простейшего механического гироскопа в карданном подвесе

Основные типы гироскопов по количеству степеней свободы:

  • 2х-степенные,
  • 3х-степенные.

Основные два типа гироскопов по принципу действия:

  • механические гироскопы,
  • оптические гироскопы.

По режиму действия гироскопы делятся на:

  • датчики угловой скорости,
  • указатели направления.

Однако, одно и то же устройство может работать в разных режимах в зависимости от типа управления.
Среди механических гироскопов выделяется ро́торный гироско́пбыстро-вращающееся твёрдое тело, ось вращения которого способна изменять ориентацию в пространстве. При этом скорость вращения гироскопа значительно превышает скорость поворота оси его вращения. Основное свойство такого гироскопа — способность сохранять в пространстве неизменное направление оси вращения при отсутствии воздействия на неё внешних сил.

Впервые это свойство использовал Фуко в 1852 г. для экспериментальной демонстрации вращения Земли. Именно благодаря этой демонстрации гироскоп и получил своё название от греческих слов «вращение наблюдаю».

Содержание

[править] Свойства роторного гироскопа

Структура механического гироскопа.
Структура механического гироскопа.

При воздействии по оси чувствительности момента внешней силы, стремящейся изменить направленность в пространстве оси собственного вращения, эта ось гироскопа начинает отклоняться не по оси действия момента, а по перпендикулярной ей. В результате этого, гироскоп вращается вокруг измерительной оси, перпендикулярной направлению вектора приложенного момента (явление прецессии).

Данное свойство напрямую связано с возникновением так называемой кориолисовой силы. Так, при воздействии момента внешней силы гироскоп поначалу будет вращаться именно в направленнии действия внешнего момента (нутационный бросок). Каждая частица гироскопа будет таким образом двигаться с переносной угловой скоростью вращения из-за момента. Но роторный гироскоп, помимо этого, и сам вращается, значит, каждая частица будет иметь относительную скорость. Следовательно, возникнет кориолисова сила, которая будет заставлять гироскоп двигаться в перпендекулярном приложенному моменту направлению то есть прецессировать. Прецессия вызовет кориолисову силу, момент которой скомпенсирует момент внешней силы.

Гироскопический эффект вращающихся тел есть проявление коренного свойства материи — её инертности.

Упрощённо, поведение гироскопа описывается уравнением:

\mathbf{\tau}={{d \mathbf{L}}\over {dt}}={{d(I\mathbf{\omega})} \over {dt}}=I\mathbf{\alpha},

где векторы τ и L являются, соответственно, моментом силы, действующей на гироскоп, и его моментом импульса, скаляр I — его моментом инерции, векторы ω и α угловой скоростью и угловым ускорением.

Отсюда следует, что моментом силы τ, приложенный перпендикулярно оси вращения гироскопа, то есть перпендикулярный L, приводит к движению, перпендикулярному как τ, так и L, то есть к явлению прецессии. Угловая скорость прецессии ΩP гироскопа определяется его моментом импульса и моментом приложенной силы:

\mathbf{\tau}={\Omega}_P \times \mathbf{L},

то есть ΩP обратно пропорциональна скорости вращения гироскопа.

[править] Применение гироскопов в технике

Гироскоп с тремя степенями свободы: физическая диаграмма.
Гироскоп с тремя степенями свободы: физическая диаграмма.

Свойства гироскопа используются в приборах — гироскопах, основной частью которых является быстро вращающийся ротор, который имеет несколько степеней свободы (осей возможного вращения).

Чаще всего используются гироскопы, размещённые в карданном (кардановом) подвесе (см. рис.). Такие гироскопы имеют 3 степени свободы, т.е. он может совершать 3 независимых поворота вокруг осей АA', BB' и CC', пересекающихся в центре подвеса О, который остаётся по отношению к основанию A неподвижным.

Гироскопы, у которых центр масс совпадает с центром подвеса O, называются астатическими, в противном случае — тяжёлыми гироскопами.

Для обеспечения вращения ротора гироскопа с высокой скоростью применяются специальные гиромоторы.

Для управления гироскопом и снятия с него информации используются датчики угла и датчики момента.

Гироскопы используются в виде компонентов как в системах навигации (гирокомпасы, ИНС и т.п.), так и в нереактивных системах ориентации и стабилизации космических аппаратов.

[править] Системы стабилизации

Системы стабилизации бывают 3-х основных типов.

  • Система силовой стабилизации (на 2-х степенных гироскопах).

Для стабилизации вокруг каждой оси нужен один гироскоп. Стабилизация осуществляется гироскопом, но с помощью двигателей разгрузки.

  • Система индикаторно-силовой стабилизации (на 2-х степенных гироскопах).

Для стабилизации вокруг каждой оси нужен один гироскоп. Стабилизация осуществляется только двигателями разгрузки.

  • Система индикатороной стабилизации (на 3-х степенных гироскопах)

Для стабилизации вокруг двух осей нужен один гироскоп. Стабилизация осуществляется только двигателями разгрузки.


[править] Новые типы гироскопов

Постоянно растущие требования к точностным и эксплутационным характеристикам гиро-приборов заставили ученых и инженеров многих стран мира не только усовершенствовать классические гироскопы с вращающимся ротором, но и искать принципиально новые идеи, позволившие решить проблему создания чувствительных датчиков для измерения и отображения параметров углового движения объекта.

В настоящее время известно более ста различных явлений и физических принципов, которые позволяют решать гироскопические задачи. В России и США выданы тысячи патентов и авторских свидетельств на соответствующие открытия и изобретения. Даже их беглое перечисление представляет невыполнимую задачу. При этом, надо учесть, что уровень развития гироскопии оказывал существенное влияние на обороноспособность, поэтому во времена холодной войны гироскопы разрабатывались в обстановке строжайшей секретности и информация о полученных результатах хранилась «за семью печатями». Для открытой же публикации, порой, подготавливались фальсифицированные данные.

[править] Перспективы развития гироскопостроения

Сегодня созданы настолько точные гироскопические системы, что дальнейшего повышения точностей многим потребителям уже не требуется, а сокращение средств, выделяемых для военно-промышленного комплекса в бюджетах ведущих мировых стран, резко повысило интерес к гражданским применениям гироскопической техники, которые были ранее на периферии внимания разработчиков. Например использование микромеханических гироскопов для систем стабилизации движения автомобилей или видеокамер.

В то же время выдающийся прогресс в области высокоточной спутниковой навигации GPS и ГЛОНАСС, по мнению сторонников этих методов навигации, сделал ненужными автономные средства навигации в тех случаях, когда сигнал со спутника может приниматься непрерывно. Дело в том, говорят они, что разрабатываемая сейчас система навигационных спутников третьего поколения позволит определять координаты объектов на поверхности Земли с точностью до единиц сантиметров. При этом якобы отпадает необходимость в использовании даже курсовых гироскопов, ибо сравнение показаний двух приемников спутниковых сигналов, установленных на расстоянии в несколько метров, например, на крыльях самолета, позволяет получить информацию о повороте самолета вокруг вертикальной оси. Такая система, как они считают, оставляет не у дел десятки тысяч работников предприятий, выпускающих гироскопы для самолётов и морских кораблей.

Однако на деле системы GPS оказываются неспособны сколь-либо точно определять положение в городских условиях, при плохой видимости спутников. Такие же проблемы обнаруживаются в лесистой местности. Даже в самолётах GPS, хотя и оказывается точнее акселерометров на длинных участках, даёт большие погрешности как при измерении углов посредством использования 2 GPS-приёмников (иногда даже градусы), так и при подсчёте курса путём определения скорости самолёта (погрешность на угол скольжения). Поэтому в навигационных системах оптимальным решением, сейчас, является комбинация гироскопической системы и GPS.

В силу перечисленных обстоятельств эволюционное развитие гироскопической техники за последние десятилетия подступило к порогу качественных изменений и, именно поэтому, внимание специалистов в области гироскопии сосредоточилось сейчас на поиске нестандартных применения таких приборов. Открылись совершенно новые интересные задачи. Это и разведка полезных ископаемых, и предсказание землетрясений, и сверхточное измерение положений железнодорожных путей и нефтепроводов, медицинская техника и многие другие.

[править] Игрушки на основе гироскопа

Самыми простыми примерами игрушек, сделанных на основе гироскопа, являются йо-йо и волчок.
Кроме того, существуют кистевые тренажёры Powerball, которые также работают на гироскопическом эффекте.

[править] Литература

  • Бороздин В.Н. Гироскопические приборы и устройства систем управления: Учеб. пособие для ВТУЗов., М., Машиностроение, 1990.
  • Павловский М.А. Теория гироскопов: Учебник для ВУЗов., Киев, Вища Школа, 1986.

[править] Ссылки

 
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu