Математическая модель
Материал из Википедии — свободной энциклопедии
![]() |
Эту статью или раздел следует викифицировать. Пожалуйста, оформите её согласно общим правилам и указаниям. |
Математи́ческая моде́ль — это упрощенное описание реальности с помощью математических понятий. Математическое моделирование — процесс построения и изучения математических моделей реальных процессов и явлений. Все естественные и общественные науки, использующие математический аппарат, по сути занимаются математическим моделированием: заменяют реальный объект его моделью и затем изучают последнюю. Как и в случае любого моделирования, математическая модель не описывает полностью изучаемое явление, и вопросы о применимости полученных таким образом результатов являются весьма содержательными.
Содержание |
[править] Пример
Рассмотрим механическую систему, состоящую из пружины, закрепленной с одного конца, и груза массой m, прикрепленного к свободному концу пружины. Будем считать, что груз может двигаться только в направлении оси пружины (например, движение происходит вдоль стержня). Построим математическую модель этой системы. Будем описывать состояние системы расстоянием x от центра груза до его положения равновесия. Опишем взаимодействие пружины и груза с помощью закона Гука (F = − kx) после чего воспользуемся \emph{вторым законом Ньютона}, чтобы выразить его в форме дифференциального уравнения:

где означает вторую производную от x по времени:
. Полученное уравнение описывает математическую модель рассмотренной физической системы. Эта модель называется «гармоническим осциллятором». В процессе ее построения мы сделали множество допущений (об отсутствии внешних сил, отсутствии трения, малости отклонений и т.~д.), которые в реальности могут не выполняться. В некотором приближении (скажем, пока отклонение груза от равновесия невелико и при соблюдении некоторых других условий), такая модель достаточно хорошо описывает реальную систему, поскольку отброшенные факторы оказывают пренебрежимо малое влияние на ее поведение. Однако модель можно уточнить, приняв во внимание какие-то из этих факторов. Это приведет к новой модели, с более широкой (хотя и снова ограниченной) областью применимости. Впрочем, при уточнении модели, сложность ее математического исследования может существенно возрасти и сделать модель фактически бесполезной. Зачастую более простая модель позволяет лучше и глубже исследовать реальную систему, чем более сложная (и, формально, «более правильная»).
[править] Жесткие и мягкие модели
Гармонический осциллятор — пример так называемой «жесткой» модели. Как уже было сказано, она получена в результате сильной идеализации реальной физической системы. Для решения вопроса о ее применимости необходимо понять, насколько существенными являются факторы, которыми мы пренебрегли. Иными словами, нужно исследовать «мягкую» модель, получающуюся малым возмущением «жесткой». Она может задаваться, например, следующим уравнением:

Здесь — некоторая функция, в которой может учитываться сила трения или зависимость коэффициента жесткости пружины от степени ее растяжения,
— некоторый малый параметр. Явный вид функции f нас в данный момент не интересует~. Если мы докажем, что поведение мягкой модели принципиально не отличается от поведения жесткой (вне зависимости от явного вида возмущающих факторов, если они достаточно малы), задача сведется к исследованию жесткой модели. В противном случае применение результатов, полученных при изучении жесткой модели, потребует дополнительных исследований. Например, решением уравнения гармонического осциллятора являются функции вида
, то есть колебания с постоянной амплитудой. Следует ли из этого, что реальный осциллятор будет бесконечно долго колебаться с постоянной амплитудой? Нет, поскольку рассматривая систему со сколь угодно малым трением (всегда присутствующим в реальной системе), мы получим затухающие колебания. Поведение системы качественно изменилось.
Если система сохраняет свое качественное поведение при малом возмущении, говорят, что она структурно устойчива. Гармонический осциллятор — пример структурно-неустойчивой системы. Тем не менее, эту модель можно применять для изучения процессов на ограниченных промежутках времени.
[править] Универсальность моделей
Математические модели обычно обладают важным свойством универсальности: принципиально разные реальные явления могут описываться одной и той же математической моделью. Скажем, гармонический осциллятор описывает не только поведение груза на пружине, но и другие колебательные процессы, зачастую имеющие совершенно иную природу: малые колебания маятника, колебания уровня жидкости в U-образном сосуде, изменение силы тока в колебательном контуре или колебания популяций биологических видов. Таким образом, изучая одну математическую модель, мы изучаем сразу целый класс описываемых ею явлений.
[править] Задачи математического моделирования
Существует два основных класса задач, связанных с математическими моделями: прямые и обратные. В первом случае все параметры модели считаются известными, и нам остается только исследовать ее поведение. Например, определение частоты колебаний гармонического осциллятора при известном значении параметра k -- прямая задача математического моделирования.
Порой требуется решить обратную задачу: какие-то параметры модели неизвестны (например, не могут быть измерены явно), и требуется их найти, сопоставляя поведение реальной системы с ее моделью. Еще одна обратная задача: подобрать параметры модели таким образом, чтобы она удовлетворяла каким-то заданным условиям — такие задачи требуется решать при проектировании систем.
[править] Дополнительные примеры
[править] Модель Мальтуса
Cкорость роста пропорциональна текущему размеру популяции. Она описывается дифференциальным уравнением

где α — некоторый параметр, определяемый разностью между рождаемостью и смертностью. Решением этого уравнения является экспоненциальная функция x(t) = x0eαt. Если рождаемость превосходит смертность (α > 0), размер популяции неограниченно и очень быстро возрастает. Понятно, что в действительности этого не может происходить из-за ограниченности ресурсов. При достижении некоторого критического объема популяции модель перестает быть адекватной, поскольку не учитывает ограниченность ресурсов. Уточнением модели Мальтуса может служить логистическая модель, которая описывается дифференциальным уравнением Ферхюльста

где xs — «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к равновесному значению xs, причем такое поведение структурно устойчиво.
[править] Система хищник-жертва
Допустим, что на некоторой территории обитают два вида животных: кролики (питающиеся растениями) и лисы (питающиеся кроликами). Пусть число кроликов x, число лис y. Используя модель Мальтуса с необходимыми поправками, учитывающими поедание кроликов лисами, приходим к следующей системе, носящей имя Вольтерра--Лотки:

Эта система имеет равновесное состояние, когда число кроликов и лис постоянно. Отклонение от этого состояния приводит к колебания численности кроликов и лис, аналогичным колебаниям гармонического осциллятора. Как и в случае гармонического осциллятора, это поведение не является структурно устойчивым: малое изменение модели (например, учитывающее ограниченность ресурсов, необходимых кроликам) может привести к качественному изменению поведения. Например, равновестное состояние может стать устойчивым, и колебания численности будут затухать. Возможна и противоположная ситуация, когда любое малое отклонение от положения равновесия приведет к катастрофическим последствиям, вплоть до полного вымирания одного из видов. На вопрос о том, какой из этих сценариев реализуется, модель Волтерра--Лотки ответа не дает: здесь требуются дополнительные исследования.
[править] Ссылки
- Арнольд В. И. Жёсткие и мягкие математические модели. — М.: МЦНМО, 2004. ISBN 5-94057-134-4
- Безручко Б. П., Смирнов Д.А. Математическое моделирование и хаотические временные ряды. — Саратов: ГосУНЦ "Колледж", 2005. ISBN 5-94409-045-6
- Самарский А. А., Михайлов А. П. Математическое моделирование. Идеи. Методы. Примеры.. — 2-е изд., испр.. — М.: Физматлит, 2001. ISBN 5-9221-0120-X
- Введение в математическое моделирование. Учебное пособие. Под ред. П. В. Трусова. — М.: Логос, 2004. ISBN 5-94010-272-7