Soldering
From Wikipedia, the free encyclopedia
Soldering is a method of joining metal parts using a filler material (solder) which has a melting temperature below 450 °C (842 °F). Soldering is distinguished from brazing by virtue of a lower melting-temperature filler metal; it is distinguished from welding by virtue of the base metal not melting during the joining process. In a soldering process, heat is applied to the parts to be joined, causing the solder to melt and be drawn into the joint by capillary action and to bond to the materials to be joined by wetting action. After the metal cools, the resulting joints are not as strong as the base metal, but have adequate strength, electrical conductivity, and water-tightness for many uses. Soldering is an ancient technique that has been used practically as long as humans have been making items out of metal.
Contents |
[edit] Applications
The most frequent application of soldering is assembling electronic components to printed circuit boards (PCBs). Another common application is making permanent but reversible connections between copper pipes in plumbing systems. Joints in sheet-metal objects such as food cans, roof flashing, drain gutters and automobile radiators have also historically been soldered, and occasionally still are. Jewelry and small mechanical parts are often assembled by soldering. Soldering is used to join lead came and copper foil in stained glass work. Soldering can also be used to effect a semi-permanent patch for a leak in a container or cooking vessel.
[edit] Methods
Soldering can be done in a number of ways, including passing parts over a small fountain in a bulk container of molten solder (wave soldering), heating assemblies by use of an infrared lamp, or by using a point source such as an electric soldering iron, a brazing torch, or a hot-air soldering tool. Recently, reflow soldering is used almost exclusively for surface mount PCB assembly, sometimes followed by a wave-soldering or hand-soldering operation for heavy pin count connectors and oddly sized or shaped components.
Though the base material is not melted in a soldering process, some of the base material's atoms do dissolve into the liquid solder. This dissolution process enhances the soldered joint's mechanical and electrical characteristics. A "cold solder joint" with poor properties may result if the base metal is not heated adequately to thoroughly melt the solder and cause this dissolution process to occur.
Note that the distinction between soldering and brazing is arbitrary, with the only difference being the melting temperature of the filler material. A temperature of 450 °C is usually used as a practical cut-off. Different equipment and/or fixturing is usually required since (for instance) most soldering irons cannot achieve high enough temperatures for brazing. Practically speaking there is a significant difference between the two processes—brazing fillers have far more structural strength than solders, and are formulated for this as opposed to maximum electrical conductivity. Brazed connections are often as strong or nearly as strong as the parts they connect, even at elevated temperatures.
"Hard soldering" or "silver soldering" (performed with high-temperature solder containing up to 40% silver) is also often a form of brazing, since it involves filler materials with melting points in the vicinity of, or in excess of, 450 °C. Although the term "silver soldering" is used much more often than "silver brazing", it may be technically incorrect depending on the exact melting point of the filler in use. In silver soldering ("hard soldering"), the goal is generally to give a beautiful, structurally sound joint, especially in the field of jewelry. This, the temperatures involved, and the usual use of a torch rather than an iron, would seem to indicate that the process should be referred to as "brazing" rather than "soldering", but the endurance of the "soldering" apellation serves to indicate the arbitrary nature of the distinction (and the level of confusion) between the two processes.
[edit] Solders
Soldering filler materials are available in many different alloys for differing applications. Traditionally, the eutectic alloy of 63% tin and 37% lead (or 60/40, which is almost identical in performance to the eutectic) has been the alloy of choice for most copper-joining applications. A eutectic formulation has several advantages for soldering; chief among these is the coincidence of the liquidus and solidus temperatures, i.e. the absence of a plastic phase. This allows for quicker wetting out as the solder heats up, and quicker setup as the solder cools. A non-eutectic formulation must remain still as the temperature drops through the liquidus and solidus temperatures. Any differential movement during the plastic phase may result in cracks, giving an unreliable joint. Additionally, a eutectic formulation has the lowest possible melting point, which minimizes stress on components during the soldering process.
For environmental reasons, 'no-lead' solders are becoming more widely used. Unfortunately most 'no-lead' solders are not eutectic formulations, making it more difficult to create reliable joints with them. See complete discussion below; see also RoHS.
Other common solders include low-temperature formulations (often containing bismuth), which are often used to join previously-soldered assemblies without un-soldering earlier connections, and high-temperature formulations (usually containing silver) which are used for high-temperature operation or for first assembly of items which must not become unsoldered during subsequent operations. Specialty alloys are available with properties such as higher strength, better electrical conductivity and higher corrosion resistance.
[edit] Flux
In high-temperature metal joining processes (welding, brazing and soldering), the primary purpose of flux is to prevent oxidation of the base and filler materials. Tin-lead solder, for example, attaches very well to copper, but poorly to the various oxides of copper, which form quickly at soldering temperatures. Flux is a substance which is nearly inert at room temperature, but which becomes strongly reducing at elevated temperatures, preventing the formation of metal oxides. Secondarily, flux acts as a wetting agent in the soldering process.
Fluxes currently available include water-soluble fluxes (no VOC's required for removal) and 'no-clean' fluxes which are mild enough to not require removal at all. Performance of the flux needs to be carefully evaluated -- a very mild 'no-clean' flux might be perfectly acceptable for production equipment, but not give adequate performance for a poorly-controlled hand-soldering operation.
Traditional rosin fluxes are available in non-activated (R), mildly activated (RMA) and activated (RA) formulations. RA and RMA fluxes contain rosin combined with an activating agent, typically an acid, which increases the wettability of metals to which it is applied by removing existing oxides. The residue resulting from the use of RA flux is corrosive and must be cleaned off the piece being soldered. RMA flux is formulated to result in a residue which is not significantly corrosive, with cleaning being preferred but optional.
[edit] Basic electronic soldering techniques
All solder pads and device terminals must be clean for good wetting and heat transfer. The soldering iron or gun must be clean and pre-tinned with solder; otherwise, components may heat up excessively due to poor heat transfer. The devices must then be mounted on the circuit board properly. One technique is to elevate the components from the board surface (a few millimeters) to prevent heating of the circuit board during circuit operation. After inserting a device, the excess leads can be cut leaving only a length equal to the radius of the pad. You may use plastic mounting clips or holders for large devices to reduce mounting stresses.
Heat sink the leads of sensitive devices to prevent heat damage. Apply soldering iron or gun to both terminal lead and copper pad to equally heat both. Apply solder to both lead and pad but never directly to the tip of soldering iron or gun. Direct contact will cause the molten solder to flow over the gun and not over the joint. The moment the solder melts and begins to flow, remove the solder supply immediately. Do not remove the iron yet. The remaining solder will then flow over the junction of the lead and pad, assuming both are free of dirt. Let the iron heat the junction until the solder flows and then remove the iron tip. This will ensure a good solid junction. Remove the iron from the junction and let the junction cool. Solder flux will remain and should be removed.
Be sure not to move the joint while it is cooling. Doing so will result in a fractured joint. Do not blow air onto the joint while it is cooling; Instead, let it cool naturally, which will occur fairly rapidly. A good solder joint is smooth and shiny. The lead outline should be clearly visible. Clean the soldering iron tip before you begin on a new joint. It is absolutely important that the iron tip be free of residual flux. Excess solder should be removed from the tip. This solder on the tip is known as keeping the tip tinned. It aids in heat transfer to the joint.
After finishing all of the joints, remove excess flux residue from the board using alcohol, acetone, or other organic solvents. Individual joints can be cleaned mechanically. The flux film fractures easily with a small pick and can be blown away with canned air. In solder formulations with water-soluble fluxes, sometimes pressurized carbon dioxide or distilled water are used to remove flux.
Traditional solder for electronic joints is a 60/40 Tin/Lead mixture with a rosin based flux that requires solvents to clean the boards of flux.
Environmental legislation in many countries, and the whole of the European Community area, have led to a change in formulation. Water soluble non-rosin based fluxes have been increasingly used since the 1980's so that soldered boards can be cleaned with water or water based cleaners. This eliminates hazardous solvents from the production environment, and effluent.
[edit] Desoldering and Resoldering
Solder should never be reused. During soldering some of the base metal dissolves into the solder. Once the solder's capacity for the base metal has been achieved it will no longer properly bond with the base metal, usually resulting in a brittle cold solder joint with a crystalline appearance.
It is good practice to remove solder from a joint prior to resoldering—desoldering wicks or vacuum desoldering equipment can be used. Desoldering wicks contain plenty of flux that will lift the contamination from the copper trace and any device leads that are present. This will leave a bright, shiny, clean junction to be resoldered.
The lower melting point of solder means it can be melted away from the base metal, leaving it mostly intact though the outer layer will be "tinned" with solder. Flux will remain which can easily be removed by abrasive or chemical processes. This tinned layer will allow solder to flow into a new joint, resulting in a new joint, as well as making the new solder flow very quickly and easily.
[edit] Lead-free Electronic Soldering
More recently environmental legislation has specifically targeted the wide use of lead in the electronics industry. The RoHS directives in Europe require many new electronic circuit boards to be lead free by 1st July 2006, mostly in the consumer goods industry, but in some others as well.
Many new technical challenges have arisen with this endeavour.
For instance, traditional lead-free solders have a significantly higher melting point than lead-based solders, which renders them unsuitable for use with heat-sensitive electronic components and their plastic packaging. To overcome this problem, solder alloys with a high silver content and no lead have been developed with a melting point slightly lower than traditional solders.
Lead-free construction has also extended to components, pins, and connectors. Most of these pins used copper frames, and either lead, tin, gold or other finishes. Tin finishes are the most popular of lead-free finishes. Nevertheless, this brings up the issue of how to deal with tin-whiskers. Somehow, the current movement brings the electronics industry back to the problems solved in the 1960s by adding lead. JEDEC has created a classification system to help lead-free electronic manufacturers decide what kind of provisions they want to take against whiskers, depending upon their application criticity.
[edit] Stained Glass Soldering
Historically soldering tips were copper, placed in braziers. One tip was used; when the heat had transferred from the tip to the solder (and depleted the heat reserve) it was placed back in the brazier of charcoal and the next tip was used.
Currently, electric soldering irons are used; they consist of coil or ceramic heating elements, which retain heat differently, and warm up the mass differently, internal or external rheostats, and different power ratings—which change how long a bead can be run.
Common solders for stained glass are mixtures of tin and lead, respectively:
- 63/37: melts between 355–365°F
- 60/40: melts between 361–376°F
- 50/50: melts between 368–421°F
- lead-free solder (useful in jewelry, eating containers, and other environmental uses): melts around 490°F
[edit] Pipe/Mechanical soldering
Sometimes it is necessary to use solders of different melting points in complex jobs, to avoid melting an existing joint while a new joint is made.
Copper pipes used for drinking water should be soldered with a lead-free solder, which often contains silver. Leaded solder is not allowed for most new construction, though it is easier to create a solid joint with that type of solder. The immediate risks of leaded solder are minimal, since minerals in municipal or well water supplies almost immediately coat the inside of the pipe, but lead will eventually find its way into the environment.
Tools required for pipe soldering include a blowtorch (typically propane), wire brushes, a suitable solder alloy and an acid paste flux, typically based on zinc chloride. Such fluxes should never be used on electronics or with electronics tools, since they will cause corrosion of the delicate electronic part.
[edit] Soldering defects
Soldering defects are solder joints that are not soldered correctly. These defects may arise when solder temperature is too low. When the base metals are too cold, the solder will not flow and will "ball up", without creating the metallurgial bond. An incorrect solder type will lead to a weak joint. An incorrect or missing flux can corrode the metals in the joint. Without flux the joint may not be clean. A dirty or contaminated joint leads to a weak bond. Movement of metals being soldered before the solder has cooled will make the solder appear grainy and may cause a weakened joint.
[edit] Common Tools
Soldering tools include the soldering pen, which comes to a sharp point to effectively drip solder, or in a soldering gun, which uses high power electric currents converging at the tip to create higher temperatures. Common brands of soldering tools include Weller, or for the more casual hobby approach, eXacto makes a more hobby-friendly unit.
[edit] Soldering processes
- Wave soldering
- Reflow soldering
- Infrared soldering
- Induction soldering - An overview of soldering with induction and a collection of Application Notes
- Ultrasonic soldering
- Dip soldering
- Furnace soldering
- Iron soldering
- Resistance soldering
- Torch soldering
- Silver soldering/Brazing
[edit] See also
[edit] External links
- Basic soldering guide
- EPE Magazine Basic Soldering Guide
- RoHS Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment.
- ELFNET (European Lead Free Soldering Network, a website where will be decided what the replacements will be for the present day's lead-tin alloy
- Soldering techniques for electronics manufacture.
- European Association for Brazing and Soldering - A detailed technical library and information about soldering and brazing.
- Induction soldering - An overview of soldering with induction and a collection of Application Notes
- American Welding Society Brazing and Soldering Forums A technical discussion group focused on brazing and soldering.
- How to solder With links to other onsite articles on soldering.
Metalworking:
|
|
---|---|
Pan brake | Crimp | English Wheel | Guillotine | Ironworker | Nibbler | Sheet metal forming | Sheet metal | Soldering |
|
Callaïs | Casting | Centrifugal casting | Cloisonné | Doming technique | Draw plate | Engraving | Filigree | Findings | Fretwork | Goldwork | Lapidary | Metal clay | Millesimal fineness | Omega chain | Persian weave | Relief | Repoussé and chasing | Soldering | Vacuum casting | Water torch | Wire wrap jewellery |
|
|
|
Casting | CNC | Cutting tools | Drilling and threading | Fabrication | Finishing | Grinding | Jewellery | Lathe (tool) | Machining | Machine tooling | Measuring | Metalworking | Hand tools | Metallurgy | Milling | Occupations | Press tools | Smithing | Terminology | Welding |