Matematička fizika
From Wikipedia
Izgradnja i izučavanje matematičkih modela fizičkih pojava predstavlja predmet izučavanja matematičke fizike.
Matematička fizika (MF) se paralelno razvijala od vremena Njutna paralelno sa razvojem fizike i matematike. Na kraju XVIII veka otkriven je diferencijalni i integralni račun (Njutn i Lajbnic) i formulisani osnovni zakoni klasične mehanike i teorija gravitacije (Njutn). U XVIII veku metodi MF su proučavali oscilacije struna i greda a takođe i probleme akustike i hidrodinamike.Postavljaju se i osnovi analitičke mehanike (Dalamber, Lagranž, Ojler, Bernuli, Laplas). U XIX veku MF dobija nove zadatke na rešavanju problema toplotne provodljivosti, difuzije, elastičnosti, optike, elektrodinamike, nelnearnih talasnih procesa ... U XX veku u nju se uvode problemi kvantne fizike i teorije relativnosti, a takođe i novi problemi gasne dinamike, prenosa čestica i fiziku plazme.
Osnovni matematički alat koji je korišćen u tim rešenjima je teorija diferencijalnih jednačina koja uključuje i srodne oblasti integralne jednačine i varijacioni račun, zatim teorija funkcija, funkcionalna analiza, teorija verovatnoće, približne metode i numeričku matematiku. Sa pojavom računara bitno se povećao broj matematičkih modela, koji su se mogli analizirati, i pojavila se mogućnost postavljanja računarskih eksperimenata i simulacija, realnih fizičkih procesa.U tom intezivnom razvoju teorijske fizike i savremene matematike nastaju kvalitativno nove klase modela savremene matematičke fizike.