Монте карло интеграција
Из пројекта Википедија
Монте карло интеграција је једна монте карло метода којом израчунавамо нумерички дати интеграл. Најчешће се примењује када је дати интеграл врло компликован и аналитички врло тежак или немогућ за израчунавање.
Основа су произвољни бројеви или псеудопроизвољни бројеви. У оквиру правоугаоника који изаберемо (висину можемо сами да дефинишемо, док је ширина дати интервал) посматрамо одређен број (n) произвољних тачака подједнако распоређених у изабраној области. Број тачака које се налазе унутар функције у односу на укупан број тачака требало би да нам да приближну вредност односа интеграла и свеукупне површине.
Математички записано: , A: површина правоугаоника
За велики број тачака наша прецизност се повећава, а овај начин интеграције се пре свега примењује на вишедимензионалне проблеме (тада наравно није реч о правоугаонику већ о коцки, хиперкоцки итд.).