New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Table of Clebsch-Gordan coefficients - Wikipedia, the free encyclopedia

Table of Clebsch-Gordan coefficients

From Wikipedia, the free encyclopedia


This is a table of Clebsch-Gordan coefficients. The overall sign of the coefficients for each set of constant j1, j2, j is arbitrary to some degree and has been fixed according to the Condon-Shortley and Wigner sign convention as discussed by Baird and Biedenharn.

Contents

[edit] references

  • A kind of script to generate these coefficients can be found at : [1]


Tables with the same sign convention are in K Hagiwara et al, Phys Rev D 66 (2002) 010001 (PDF) and CGord (ASCII).

These are the answers to

\langle j_1j_2;m_1m_2|j_1j_2;jm\rangle=?,

explicitly \delta_{m,m_1+m_2} \sqrt{\frac{(2j+1)(j+j_1-j_2)!(j-j_1+j_2)!(j_1+j_2-j)!(j+m)!(j-m)!} {(j_1+j_2+j+1)!(j_1-m_1)!(j_1+m_1)!(j_2-m_2)!(j_2+m_2)!}} \sum_{k=0}^{j+m} (-1)^{k+j_2+m_2}\frac{(j_2+j+m_1-k)!(j_1-m_1+k)!}{k!(j-j_1+j_2-k)!(j+m-k)!(k+j_1-j_2-m)!}

For brevity, answers for m < 0 are omitted, use that (as far as I can see from the tables generated)

\langle j_1j_2;m_1m_2|j_1j_2;jm\rangle=(-1)^{j-j_1-j_2}\langle j_1j_2;-m_1,-m_2|j_1j_2;j,-m\rangle .

[edit] j1=1/2, j2=1/2

m=1 j=



m1, m2=
1
1/2, 1/2 1\!\,
m=0 j=



m1, m2=
1 0
1/2, -1/2 \sqrt{\frac{1}{2}}\!\, \sqrt{\frac{1}{2}}\!\,
-1/2, 1/2 \sqrt{\frac{1}{2}}\!\, -\sqrt{\frac{1}{2}}\!\,

[edit] j1=1, j2=1/2

m=3/2 j=



m1, m2=
3/2
1, 1/2 1\!\,
m=1/2 j=



m1, m2=
3/2 1/2
1, -1/2 \sqrt{\frac{1}{3}}\!\, \sqrt{\frac{2}{3}}\!\,
0, 1/2 \sqrt{\frac{2}{3}}\!\, -\sqrt{\frac{1}{3}}\!\,

[edit] j1=1, j2=1

m=2 j=



m1, m2=
2
1, 1 1\!\,
m=1 j=



m1, m2=
2 1
1, 0 \sqrt{\frac{1}{2}}\!\, \sqrt{\frac{1}{2}}\!\,
0, 1 \sqrt{\frac{1}{2}}\!\, -\sqrt{\frac{1}{2}}\!\,
m=0 j=



m1, m2=
2 1 0
1, -1 \sqrt{\frac{1}{6}}\!\, \sqrt{\frac{1}{2}}\!\, \sqrt{\frac{1}{3}}\!\,
0, 0 \sqrt{\frac{2}{3}}\!\, 0\!\, -\sqrt{\frac{1}{3}}\!\,
-1, 1 \sqrt{\frac{1}{6}}\!\, -\sqrt{\frac{1}{2}}\!\, \sqrt{\frac{1}{3}}\!\,

[edit] j1=3/2, j2=1/2

m=2 j=



m1, m2=
2
3/2, 1/2 1\!\,
m=1 j=



m1, m2=
2 1
3/2, -1/2 \frac{1}{2}\!\, \sqrt{\frac{3}{4}}\!\,
1/2, 1/2 \sqrt{\frac{3}{4}}\!\, -\frac{1}{2}\!\,
m=0 j=



m1, m2=
2 1
1/2, -1/2 \sqrt{\frac{1}{2}}\!\, \sqrt{\frac{1}{2}}\!\,
-1/2, 1/2 \sqrt{\frac{1}{2}}\!\, -\sqrt{\frac{1}{2}}\!\,

[edit] j1=3/2, j2=1

m=5/2 j=



m1, m2=
5/2
3/2, 1 1\!\,
m=3/2 j=



m1, m2=
5/2 3/2
3/2, 0 \sqrt{\frac{2}{5}}\!\, \sqrt{\frac{3}{5}}\!\,
1/2, 1 \sqrt{\frac{3}{5}}\!\, -\sqrt{\frac{2}{5}}\!\,
m=1/2 j=



m1, m2=
5/2 3/2 1/2
3/2, -1 \sqrt{\frac{1}{10}}\!\, \sqrt{\frac{2}{5}}\!\, \sqrt{\frac{1}{2}}\!\,
1/2, 0 \sqrt{\frac{3}{5}}\!\, \sqrt{\frac{1}{15}}\!\, -\sqrt{\frac{1}{3}}\!\,
-1/2, 1 \sqrt{\frac{3}{10}}\!\, -\sqrt{\frac{8}{15}}\!\, \sqrt{\frac{1}{6}}\!\,

[edit] j1=3/2, j2=3/2

m=3 j=



m1, m2=
3
3/2, 3/2 1\!\,
m=2 j=



m1, m2=
3 2
3/2, 1/2 \sqrt{\frac{1}{2}}\!\, \sqrt{\frac{1}{2}}\!\,
1/2, 3/2 \sqrt{\frac{1}{2}}\!\, -\sqrt{\frac{1}{2}}\!\,
m=1 j=



m1, m2=
3 2 1
3/2, -1/2 \sqrt{\frac{1}{5}}\!\, \sqrt{\frac{1}{2}}\!\, \sqrt{\frac{3}{10}}\!\,
1/2, 1/2 \sqrt{\frac{3}{5}}\!\, 0\!\, -\sqrt{\frac{2}{5}}\!\,
-1/2, 3/2 \sqrt{\frac{1}{5}}\!\, -\sqrt{\frac{1}{2}}\!\, \sqrt{\frac{3}{10}}\!\,
m=0 j=



m1, m2=
3 2 1 0
3/2, -3/2 \sqrt{\frac{1}{20}}\!\, \frac{1}{2}\!\, \sqrt{\frac{9}{20}}\!\, \frac{1}{2}\!\,
1/2, -1/2 \sqrt{\frac{9}{20}}\!\, \frac{1}{2}\!\, -\sqrt{\frac{1}{20}}\!\, -\frac{1}{2}\!\,
-1/2, 1/2 \sqrt{\frac{9}{20}}\!\, -\frac{1}{2}\!\, -\sqrt{\frac{1}{20}}\!\, \frac{1}{2}\!\,
-3/2, 3/2 \sqrt{\frac{1}{20}}\!\, -\frac{1}{2}\!\, \sqrt{\frac{9}{20}}\!\, -\frac{1}{2}\!\,

[edit] j1=2, j2=1/2

m=5/2 j=



m1, m2=
5/2
2, 1/2 1\!\,
m=3/2 j=



m1, m2=
5/2 3/2
2, -1/2 \sqrt{\frac{1}{5}}\!\, \sqrt{\frac{4}{5}}\!\,
1, 1/2 \sqrt{\frac{4}{5}}\!\, -\sqrt{\frac{1}{5}}\!\,
m=1/2 j=



m1, m2=
5/2 3/2
1, -1/2 \sqrt{\frac{2}{5}}\!\, \sqrt{\frac{3}{5}}\!\,
0, 1/2 \sqrt{\frac{3}{5}}\!\, -\sqrt{\frac{2}{5}}\!\,

[edit] j1=2, j2=1

m=3 j=



m1, m2=
3
2, 1 1\!\,
m=2 j=



m1, m2=
3 2
2, 0 \sqrt{\frac{1}{3}}\!\, \sqrt{\frac{2}{3}}\!\,
1, 1 \sqrt{\frac{2}{3}}\!\, -\sqrt{\frac{1}{3}}\!\,
m=1 j=



m1, m2=
3 2 1
2, -1 \sqrt{\frac{1}{15}}\!\, \sqrt{\frac{1}{3}}\!\, \sqrt{\frac{3}{5}}\!\,
1, 0 \sqrt{\frac{8}{15}}\!\, \sqrt{\frac{1}{6}}\!\, -\sqrt{\frac{3}{10}}\!\,
0, 1 \sqrt{\frac{2}{5}}\!\, -\sqrt{\frac{1}{2}}\!\, \sqrt{\frac{1}{10}}\!\,
m=0 j=



m1, m2=
3 2 1
1, -1 \sqrt{\frac{1}{5}}\!\, \sqrt{\frac{1}{2}}\!\, \sqrt{\frac{3}{10}}\!\,
0, 0 \sqrt{\frac{3}{5}}\!\, 0\!\, -\sqrt{\frac{2}{5}}\!\,
-1, 1 \sqrt{\frac{1}{5}}\!\, -\sqrt{\frac{1}{2}}\!\, \sqrt{\frac{3}{10}}\!\,

[edit] j1=2, j2=3/2

m=7/2 j=



m1, m2=
7/2
2, 3/2 1\!\,
m=5/2 j=



m1, m2=
7/2 5/2
2, 1/2 \sqrt{\frac{3}{7}}\!\, \sqrt{\frac{4}{7}}\!\,
1, 3/2 \sqrt{\frac{4}{7}}\!\, -\sqrt{\frac{3}{7}}\!\,
m=3/2 j=



m1, m2=
7/2 5/2 3/2
2, -1/2 \sqrt{\frac{1}{7}}\!\, \sqrt{\frac{16}{35}}\!\, \sqrt{\frac{2}{5}}\!\,
1, 1/2 \sqrt{\frac{4}{7}}\!\, \sqrt{\frac{1}{35}}\!\, -\sqrt{\frac{2}{5}}\!\,
0, 3/2 \sqrt{\frac{2}{7}}\!\, -\sqrt{\frac{18}{35}}\!\, \sqrt{\frac{1}{5}}\!\,
m=1/2 j=



m1, m2=
7/2 5/2 3/2 1/2
2, -3/2 \sqrt{\frac{1}{35}}\!\, \sqrt{\frac{6}{35}}\!\, \sqrt{\frac{2}{5}}\!\, \sqrt{\frac{2}{5}}\!\,
1, -1/2 \sqrt{\frac{12}{35}}\!\, \sqrt{\frac{5}{14}}\!\, 0\!\, -\sqrt{\frac{3}{10}}\!\,
0, 1/2 \sqrt{\frac{18}{35}}\!\, -\sqrt{\frac{3}{35}}\!\, -\sqrt{\frac{1}{5}}\!\, \sqrt{\frac{1}{5}}\!\,
-1, 3/2 \sqrt{\frac{4}{35}}\!\, -\sqrt{\frac{27}{70}}\!\, \sqrt{\frac{2}{5}}\!\, -\sqrt{\frac{1}{10}}\!\,

[edit] j1=2, j2=2

m=4 j=



m1, m2=
4
2, 2 1\!\,
m=3 j=



m1, m2=
4 3
2, 1 \sqrt{\frac{1}{2}}\!\, \sqrt{\frac{1}{2}}\!\,
1, 2 \sqrt{\frac{1}{2}}\!\, -\sqrt{\frac{1}{2}}\!\,
m=2 j=



m1, m2=
4 3 2
2, 0 \sqrt{\frac{3}{14}}\!\, \sqrt{\frac{1}{2}}\!\, \sqrt{\frac{2}{7}}\!\,
1, 1 \sqrt{\frac{4}{7}}\!\, 0\!\, -\sqrt{\frac{3}{7}}\!\,
0, 2 \sqrt{\frac{3}{14}}\!\, -\sqrt{\frac{1}{2}}\!\, \sqrt{\frac{2}{7}}\!\,
m=1 j=



m1, m2=
4 3 2 1
2, -1 \sqrt{\frac{1}{14}}\!\, \sqrt{\frac{3}{10}}\!\, \sqrt{\frac{3}{7}}\!\, \sqrt{\frac{1}{5}}\!\,
1, 0 \sqrt{\frac{3}{7}}\!\, \sqrt{\frac{1}{5}}\!\, -\sqrt{\frac{1}{14}}\!\, -\sqrt{\frac{3}{10}}\!\,
0, 1 \sqrt{\frac{3}{7}}\!\, -\sqrt{\frac{1}{5}}\!\, -\sqrt{\frac{1}{14}}\!\, \sqrt{\frac{3}{10}}\!\,
-1, 2 \sqrt{\frac{1}{14}}\!\, -\sqrt{\frac{3}{10}}\!\, \sqrt{\frac{3}{7}}\!\, -\sqrt{\frac{1}{5}}\!\,
m=0 j=



m1, m2=
4 3 2 1 0
2, -2 \sqrt{\frac{1}{70}}\!\, \sqrt{\frac{1}{10}}\!\, \sqrt{\frac{2}{7}}\!\, \sqrt{\frac{2}{5}}\!\, \sqrt{\frac{1}{5}}\!\,
1, -1 \sqrt{\frac{8}{35}}\!\, \sqrt{\frac{2}{5}}\!\, \sqrt{\frac{1}{14}}\!\, -\sqrt{\frac{1}{10}}\!\, -\sqrt{\frac{1}{5}}\!\,
0, 0 \sqrt{\frac{18}{35}}\!\, 0\!\, -\sqrt{\frac{2}{7}}\!\, 0\!\, \sqrt{\frac{1}{5}}\!\,
-1, 1 \sqrt{\frac{8}{35}}\!\, -\sqrt{\frac{2}{5}}\!\, \sqrt{\frac{1}{14}}\!\, \sqrt{\frac{1}{10}}\!\, -\sqrt{\frac{1}{5}}\!\,
-2, 2 \sqrt{\frac{1}{70}}\!\, -\sqrt{\frac{1}{10}}\!\, \sqrt{\frac{2}{7}}\!\, -\sqrt{\frac{2}{5}}\!\, \sqrt{\frac{1}{5}}\!\,

[edit] j1=5/2, j2=1/2

m=3 j=



m1, m2=
3
5/2, 1/2 1\!\,
m=2 j=



m1, m2=
3 2
5/2, -1/2 \sqrt{\frac{1}{6}}\!\, \sqrt{\frac{5}{6}}\!\,
3/2, 1/2 \sqrt{\frac{5}{6}}\!\, -\sqrt{\frac{1}{6}}\!\,
m=1 j=



m1, m2=
3 2
3/2, -1/2 \sqrt{\frac{1}{3}}\!\, \sqrt{\frac{2}{3}}\!\,
1/2, 1/2 \sqrt{\frac{2}{3}}\!\, -\sqrt{\frac{1}{3}}\!\,
m=0 j=



m1, m2=
3 2
1/2, -1/2 \sqrt{\frac{1}{2}}\!\, \sqrt{\frac{1}{2}}\!\,
-1/2, 1/2 \sqrt{\frac{1}{2}}\!\, -\sqrt{\frac{1}{2}}\!\,

[edit] j1=5/2, j2=1

m=7/2 j=



m1, m2=
7/2
5/2, 1 1\!\,
m=5/2 j=



m1, m2=
7/2 5/2
5/2, 0 \sqrt{\frac{2}{7}}\!\, \sqrt{\frac{5}{7}}\!\,
3/2, 1 \sqrt{\frac{5}{7}}\!\, -\sqrt{\frac{2}{7}}\!\,
m=3/2 j=



m1, m2=
7/2 5/2 3/2
5/2, -1 \sqrt{\frac{1}{21}}\!\, \sqrt{\frac{2}{7}}\!\, \sqrt{\frac{2}{3}}\!\,
3/2, 0 \sqrt{\frac{10}{21}}\!\, \sqrt{\frac{9}{35}}\!\, -\sqrt{\frac{4}{15}}\!\,
1/2, 1 \sqrt{\frac{10}{21}}\!\, -\sqrt{\frac{16}{35}}\!\, \sqrt{\frac{1}{15}}\!\,
m=1/2 j=



m1, m2=
7/2 5/2 3/2
3/2, -1 \sqrt{\frac{1}{7}}\!\, \sqrt{\frac{16}{35}}\!\, \sqrt{\frac{2}{5}}\!\,
1/2, 0 \sqrt{\frac{4}{7}}\!\, \sqrt{\frac{1}{35}}\!\, -\sqrt{\frac{2}{5}}\!\,
-1/2, 1 \sqrt{\frac{2}{7}}\!\, -\sqrt{\frac{18}{35}}\!\, \sqrt{\frac{1}{5}}\!\,

[edit] j1=5/2, j2=3/2

m=4 j=



m1, m2=
4
5/2, 3/2 1\!\,
m=3 j=



m1, m2=
4 3
5/2, 1/2 \sqrt{\frac{3}{8}}\!\, \sqrt{\frac{5}{8}}\!\,
3/2, 3/2 \sqrt{\frac{5}{8}}\!\, -\sqrt{\frac{3}{8}}\!\,
m=2 j=



m1, m2=
4 3 2
5/2, -1/2 \sqrt{\frac{3}{28}}\!\, \sqrt{\frac{5}{12}}\!\, \sqrt{\frac{10}{21}}\!\,
3/2, 1/2 \sqrt{\frac{15}{28}}\!\, \sqrt{\frac{1}{12}}\!\, -\sqrt{\frac{8}{21}}\!\,
1/2, 3/2 \sqrt{\frac{5}{14}}\!\, -\sqrt{\frac{1}{2}}\!\, \sqrt{\frac{1}{7}}\!\,
m=1 j=



m1, m2=
4 3 2 1
5/2, -3/2 \sqrt{\frac{1}{56}}\!\, \sqrt{\frac{1}{8}}\!\, \sqrt{\frac{5}{14}}\!\, \sqrt{\frac{1}{2}}\!\,
3/2, -1/2 \sqrt{\frac{15}{56}}\!\, \sqrt{\frac{49}{120}}\!\, \sqrt{\frac{1}{42}}\!\, -\sqrt{\frac{3}{10}}\!\,
1/2, 1/2 \sqrt{\frac{15}{28}}\!\, -\sqrt{\frac{1}{60}}\!\, -\sqrt{\frac{25}{84}}\!\, \sqrt{\frac{3}{20}}\!\,
-1/2, 3/2 \sqrt{\frac{5}{28}}\!\, -\sqrt{\frac{9}{20}}\!\, \sqrt{\frac{9}{28}}\!\, -\sqrt{\frac{1}{20}}\!\,
m=0 j=



m1, m2=
4 3 2 1
3/2, -3/2 \sqrt{\frac{1}{14}}\!\, \sqrt{\frac{3}{10}}\!\, \sqrt{\frac{3}{7}}\!\, \sqrt{\frac{1}{5}}\!\,
1/2, -1/2 \sqrt{\frac{3}{7}}\!\, \sqrt{\frac{1}{5}}\!\, -\sqrt{\frac{1}{14}}\!\, -\sqrt{\frac{3}{10}}\!\,
-1/2, 1/2 \sqrt{\frac{3}{7}}\!\, -\sqrt{\frac{1}{5}}\!\, -\sqrt{\frac{1}{14}}\!\, \sqrt{\frac{3}{10}}\!\,
-3/2, 3/2 \sqrt{\frac{1}{14}}\!\, -\sqrt{\frac{3}{10}}\!\, \sqrt{\frac{3}{7}}\!\, -\sqrt{\frac{1}{5}}\!\,

[edit] j1=5/2, j2=2

m=9/2 j=



m1, m2=
9/2
5/2, 2 1\!\,
m=7/2 j=



m1, m2=
9/2 7/2
5/2, 1 \frac{2}{3}\!\, \sqrt{\frac{5}{9}}\!\,
3/2, 2 \sqrt{\frac{5}{9}}\!\, -\frac{2}{3}\!\,
m=5/2 j=



m1, m2=
9/2 7/2 5/2
5/2, 0 \sqrt{\frac{1}{6}}\!\, \sqrt{\frac{10}{21}}\!\, \sqrt{\frac{5}{14}}\!\,
3/2, 1 \sqrt{\frac{5}{9}}\!\, \sqrt{\frac{1}{63}}\!\, -\sqrt{\frac{3}{7}}\!\,
1/2, 2 \sqrt{\frac{5}{18}}\!\, -\sqrt{\frac{32}{63}}\!\, \sqrt{\frac{3}{14}}\!\,
m=3/2 j=



m1, m2=
9/2 7/2 5/2 3/2
5/2, -1 \sqrt{\frac{1}{21}}\!\, \sqrt{\frac{5}{21}}\!\, \sqrt{\frac{3}{7}}\!\, \sqrt{\frac{2}{7}}\!\,
3/2, 0 \sqrt{\frac{5}{14}}\!\, \sqrt{\frac{2}{7}}\!\, -\sqrt{\frac{1}{70}}\!\, -\sqrt{\frac{12}{35}}\!\,
1/2, 1 \sqrt{\frac{10}{21}}\!\, -\sqrt{\frac{2}{21}}\!\, -\sqrt{\frac{6}{35}}\!\, \sqrt{\frac{9}{35}}\!\,
-1/2, 2 \sqrt{\frac{5}{42}}\!\, -\sqrt{\frac{8}{21}}\!\, \sqrt{\frac{27}{70}}\!\, -\sqrt{\frac{4}{35}}\!\,
m=1/2 j=



m1, m2=
9/2 7/2 5/2 3/2 1/2
5/2, -2 \sqrt{\frac{1}{126}}\!\, \sqrt{\frac{4}{63}}\!\, \sqrt{\frac{3}{14}}\!\, \sqrt{\frac{8}{21}}\!\, \sqrt{\frac{1}{3}}\!\,
3/2, -1 \sqrt{\frac{10}{63}}\!\, \sqrt{\frac{121}{315}}\!\, \sqrt{\frac{6}{35}}\!\, -\sqrt{\frac{2}{105}}\!\, -\sqrt{\frac{4}{15}}\!\,
1/2, 0 \sqrt{\frac{10}{21}}\!\, \sqrt{\frac{4}{105}}\!\, -\sqrt{\frac{8}{35}}\!\, -\sqrt{\frac{2}{35}}\!\, \sqrt{\frac{1}{5}}\!\,
-1/2, 1 \sqrt{\frac{20}{63}}\!\, -\sqrt{\frac{14}{45}}\!\, 0\!\, \sqrt{\frac{5}{21}}\!\, -\sqrt{\frac{2}{15}}\!\,
-3/2, 2 \sqrt{\frac{5}{126}}\!\, -\sqrt{\frac{64}{315}}\!\, \sqrt{\frac{27}{70}}\!\, -\sqrt{\frac{32}{105}}\!\, \sqrt{\frac{1}{15}}\!\,

Image:CG table.jpeg

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu