Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Tarski's axioms - Wikipedia, the free encyclopedia

Tarski's axioms

From Wikipedia, the free encyclopedia

Tarski's axioms, due to Alfred Tarski, are an axiom set for the substantial fragment of Euclidean geometry, called "elementary," that is formulable in first-order logic with identity, and requiring no set theory. Other modern axiomizations of Euclidean geometry are those by Hilbert and George Birkhoff.

Contents

[edit] The axioms

Alfred Tarski worked on the axiomatization and metamathematics of Euclidean geometry intermittently from 1926 until his 1983 death, with Tarski (1959) heralding his mature interest in the subject. The work of Tarski and his student and disciples on Euclidean geometry culminated in the monograph Schwabhäuser, Szmielew, and Tarski (1983), which set out the 10 axioms and one axiom schema shown below, the resulting metamathematics, and a fair bit of the subject. Gupta (1965) made important contributions, and Tarski and Givant (1999) discuss much of the history.

These axioms are a more elegant version of a set Tarski devised in the 1920s as part of his investigation of the metamathematical properties of Euclidean plane geometry. This objective required reformulating that geometry as a first-order theory. Tarski did so by positing a universe of points and two primitive relations: a triadic relation of "betweenness," and a tetradic relation of "congruence" (or "equidistance"). Let lower case letters denote variables ranging over the universe of points. That y is "between" x and z, i.e., that x, y, and z are collinear with y "between", is denoted by the atomic sentence Bxyz. Let xy denote the line segment whose endpoints are x and y. The intuitive meaning of the atomic sentence wxyz is that wx is congruent to yz. Informally, the "distance" between w and x is the same as the distance between y and z. Betweenness captures the affine aspect of Euclidean geometry; congruence, the metric aspect. Identity, invoked five times, is a primitive binary relation that is part of the underlying logic.

The axioms below are grouped by the types of relation they invoke, then sorted, first by the number of existential quantifiers, then by the number of atomic sentences. Free variables should be taken as tacitly universally quantified.

Congruence alone:

Reflexivity of congruence:

xy \equiv yx\,

The distance from x to y is the same as that from y to x.

Identity of congruence:

xy \equiv zz \rightarrow x=y

If xy is congruent with a segment that begins and ends at the same point, x and y are the same point.

Transitivity of congruence:

(xy \equiv zu \and xy \equiv vw) \rightarrow zu \equiv vw

Two line segments both congruent to a third segment are congruent to each other; all three segments have the same length. This is essentially one of Euclid's "common notions."

Betweenness alone:

Identity of betweenness:

Bxyx \rightarrow x=y

It is not possible for a point to be "between" a point; points are indivisible.

Axiom of Pasch:

(Bxuz \and Byvz) \rightarrow \exists a\, (Buay \and Bvax)

Draw line segments connecting any two vertices of a given triangle with the sides opposite the vertices. These two line segments must then intersect at some point inside the triangle.

Axiom schema of continuity Let φ(x) and ψ(y) be first-order formulae in which a and b do not occur free. Moreover, there are no free instances of x in ψ(y) or of y in φ(x). Then all instances of

\exists a \,\forall x\, \forall y\,(\phi(x) \and \psi(y) \rightarrow Baxy) \rightarrow \exists b\, \forall x\, \forall y\,(\phi(x) \and \psi(y) \rightarrow Bxby)

are axioms.

Let the first-order formulae φ and ψ define subsets X and Y of a ray r with end-point a, such that every point from Y is to the right of any point of X (with respect to a). Then there exists a point b in r which lies between X and Y.

Lower dimension:

\exists a \, \exists b\, \exists c\, (\neg Babc \and \neg Bbca \and \neg Bcab), logically equivalent to \neg \forall x\, \forall y\, \forall z\, (Bxyz \or Byzx \or Bzxy)

There exist 3 noncollinear points. Hence any model of these axioms must have dimension > 1.

Congruence and betweenness:

Upper dimension:

(xu \equiv xv \and yu \equiv yv \and zu \equiv zv \and u \ne v) \rightarrow (Bxyz \or Byzx \or Bzxy)

Three points equidistant from two distinct points form a line. Hence any model of these axioms must have dimension < 3.

Axiom of Euclid: Each of the three variants of this axiom, all equivalent to Euclid's parallel postulate, has an advantage over the others:

  • A dispenses with existential quantifiers;
  • B has the fewest variables and atomic sentences;
  • C, requires but one primitive notion, betweenness. This variant is the usual one given in the literature.
A: ((Bxyw \and xy \equiv yw ) \and (Bxuv \and xu \equiv uv) \and (Byuz \and yu \equiv zu)) \rightarrow yz \equiv vw

Let a line segment join the midpoint of two sides of a given triangle. That line segment will be half as long as the third side. This is equivalent to the interior angles of any triangle summing to two right angles.

B:Bxyz \or Byzx \or Bzxy \or \exists a\, (xa \equiv ya \and xa \equiv za)

Given any triangle, there exists a circle that includes all of its vertices.

C: (Bxuv \and Byuz \and x \ne u) \rightarrow \exists a\, \exists b\,(Bxya \and Bxzb \and Bavb)

Given any angle and any point v in its interior, there exists a line segment including v, with an endpoint on each side of the angle.

Five Segment:

{(x \ne y  \and  Bxyz  \and  Bx'y'z'  \and xy \equiv x'y' \and yz \equiv y'z' \and xu \equiv x'u' \and yu \equiv y'u')} \rightarrow zu \equiv z'u'

Begin with two triangles, xuz and x'u'z'. Draw the line segments yu and y'u', connecting a vertex of each triangle to a point on the side opposite the vertex. The result is two divided triangles, each made up of five segments. If four segments of one triangle are each congruent to a segment in the other triangle, then the fifth segments in both triangles must be congruent.

Segment construction:

\exists a\, (Bwxa \and xa \equiv yz)

Given any two line segments, the second can be "extended" by a line segment congruent to the first.

[edit] Discussion

Starting from two primitive relations whose fields are a dense universe of points, Tarski built a geometry of line segments. According to Tarski and Givant (1999: 192-93), none of the above axioms is fundamentally new. The first four axioms establish some elementary properties of the two primitive relations. For instance, Reflexivity and Transitivity (whose more exact name, "Euclidean", aliases with Euclid's axiom) of Congruence establish that congruence is an equivalence relation over line segments. The Identity of Congruence and of Betweenness govern the trivial case when those relations are applied to nondistinct points. The theorem xyzzx=yBxyx extends these Identity axioms.

A number of other properties of betweenness are derivable as theorems including:

The last two properties totally order the points making up a line segment.

Upper and Lower Dimension together require that any model of these axioms have a specific finite dimensionality. Suitable changes in these axioms yield axiom sets for Euclidean geometry for dimensions 0, 1, and greater than 2 (Tarski and Givant 1999: Axioms 8(1), 8(n), 9(0), 9(1), 9(n) ). Note that solid geometry requires no new axioms, unlike the case with Hilbert's axioms. Moreover, Lower Dimension for n dimensions is simply the negation of Upper Dimension for n - 1 dimensions.

When dimension > 1, betweenness can be defined in terms of congruence (Tarski and Givant, 1999). Begin by defining the relationship less than or equal to in terms of congruence. This can be done as xy \le zu \leftrightarrow \forall v ( zv \equiv uv \rightarrow \exists w ( xw \equiv yw \and yw \equiv uv ) ). In two dimensions, this intuitively says that for all points v on the perpendicular bisector of zu, there is a point w on the perpendicular bisector of xy such that yw is congruent to vu. Betweenness can than be defined as Bxyz \leftrightarrow \forall u ( ux \le xy \and uz \le zy \rightarrow u = y ).

The axiom schema of Continuity assures that the ordering of points on a line is complete (with respect to first-order definable properties). The Axioms of Pasch and Euclid are well known. Remarkably, Euclidean geometry requires but two more axioms:

Let "wff" abbreviate "syntactically correct formula of elementary geometry." Tarski and Givant (1999: 175) proved that elementary geometry is:

Gupta (1965) proved all axioms independent, Pasch and Reflexivity of Congruence excepted.

Negating the Axiom of Euclid yields hyperbolic geometry, while eliminating it outright yields absolute geometry. Full (as opposed to elementary) Euclidean geometry requires giving up a first order axiomatization: replace φ(x) and ψ(y) in the axiom schema of Continuity with xA and yB, where A and B are universally quantified variables ranging over sets of points.

[edit] Comparison with Hilbert

Hilbert's axioms for plane geometry number 14, and include Transitivity of Congruence and a variant of the Axiom of Pasch. The only notion from intuitive geometry invoked in the remarks to Tarski's axioms is triangle. (Versions B and C of the Axiom of Euclid refer to '"circle" and "angle," respectively.) Hilbert's axioms also require "ray," "angle," and the notion of a triangle "including" an angle. In addition to betweenness and congruence, Hilbert's axioms require a primitive binary relation "on," linking a point and a line. The Axiom schema of Continuity plays a role similar to Hilbert's two axioms of Continuity. This schema is indispensable; Euclidean geometry in Tarski's (or equivalent) language cannot be finitely axiomatized as a first-order theory. Hilbert's axioms do not constitute a first-order theory because his continuity axioms require second-order logic.

[edit] References

  • Gupta, H. N., 1965. Contributions to the Axiomatic Foundations of Geometry. Ph.D. thesis, University of California-Berkeley.
  • Alfred Tarski, 1959, '"What is Elementary Geometry?" in Leon Henkin, Patrick Suppes, and Tarski, A., eds., The Axiomatic Method, with Special Reference to Geometry and Physics. North Holland.
  • ------, and Givant, Steven, 1999, "Tarski's system of geometry," Bulletin of Symbolic Logic 5: 175-214. [1]
  • Schwabhäuser, W., Szmielew, W., and Alfred Tarski, 1983. Metamathematische Methoden in der Geometrie. Springer-Verlag.
  • Szczerba, L. W., 1986, "Tarski and Geometry," Journal of Symbolic Logic 51: 907-12.
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu