Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions User:Tomruen/List of uniform polyhedra and tilings2 - Wikipedia, the free encyclopedia

User:Tomruen/List of uniform polyhedra and tilings2

From Wikipedia, the free encyclopedia

See: User:Tomruen/polyhedron db testing

Contents

[edit] Triples

Name Picture Wythoff
symbol
Vertex figure Bowers-style
acronym
Sym.
grp
W# U# K# V E F χ Faces by type Dual
Tetrahedron 3 | 2 3
3.3.3
Tet Td W1 U01 K06 4 6 4 2 4{3}
Self-dual


Triangular prism 2 3 | 2
4.4.3
Trip D3h W-- U76(a) K01(a) 6 9 5 2 3{4}+2{3}
Triangular dipyramid


Truncated tetrahedron 2 3 | 3
3.6.6
Tut Td W6 U02 K07 12 18 8 2 4{3}+4{6}
Triakis tetrahedron


Truncated cube 2 3 | 4
3.8.8
Tic Oh W8 U09 K14 24 36 14 2 8{3}+6{8}
Triakis octahedron


Truncated dodecahedron 2 3 | 5
3.10.10
Tid Ih W10 U26 K31 60 90 32 2 20{3}+12{10}
Triakis icosahedron


Hexahedron 3 | 2 4
4.4.4
Cube Oh W3 U06 K11 8 12 6 2 6{4}
Octahedron


Cube 2 4 | 2
4.4.4
Cube D4h W-- U76(b) K01(b) 8 12 6 2 4{4}+2{4}
Octahedron


Pentagonal prism 2 5 | 2
4.4.5
Pip D5h W-- U76(c) K01(c) 10 15 7 2 5{4}+2{5}
Pentagonal dipyramid


Hexagonal prism 2 6 | 2
4.4.6
Hip D6h W-- U76(d) K01(d) 12 18 8 2 6{4}+2{6}
Hexagonal dipyramid


Octagonal prism 2 8 | 2
4.4.8
Op D8h W-- U76(e) K01(e) 16 24 10 2 8{4}+2{8}
Octagonal dipyramid


Decagonal prism 2 10 | 2
4.4.10
Dip D10h W-- U76(g) K01(g) 20 30 12 2 10{4}+2{10}
Decagonal dipyramid


Dodecagonal prism 2 12 | 2
4.4.12
Twip D12h W-- U76(i) K01(i) 24 36 14 2 12{4}+2{12} Image:Dodecagonal dipyramid.png
Dodecagonal dipyramid


Truncated octahedron 2 4 | 3
4.6.6
Toe Oh W7 U08 K13 24 36 14 2 6{4}+8{6}
Tetrakis hexahedron


Great rhombicuboctahedron 2 3 4 |
4.6.8
Girco Oh W15 U11 K16 48 72 26 2 12{4}+8{6}+6{8}
Disdyakis dodecahedron


Great rhombicosidodecahedron 2 3 5 |
4.6.10
Grid Ih W16 U28 K33 120 180 62 2 30{4}+20{6}+12{10}
Disdyakis triacontahedron


Dodecahedron 3 | 2 5
5.5.5
Doe Ih W5 U23 K28 20 30 12 2 12{5}
Icosahedron


Truncated icosahedron 2 5 | 3
5.6.6
Ti Ih W9 U25 K30 60 90 32 2 12{5}+20{6}
Pentakis dodecahedron


[edit] Quadruples

Name Picture Wythoff
symbol
Vertex figure Bowers-style
acronym
Sym.
grp
W# U# K# V E F χ Faces by type Dual
Octahedron 4 | 2 3
3.3.3.3
Oct Oh W2 U05 K10 6 12 8 2 8{3}
Cube


Triangular antiprism | 2 2 3
3.3.3.3
Oct D3d W-- U77(a) K02(a) 6 12 8 2 6{3}+2{3}
Trigonal trapezohedron


Square antiprism | 2 2 4
3.3.3.4
Squap D4d W-- U77(b) K02(b) 8 16 10 2 8{3}+2{4}
Tetragonal trapezohedron


Pentagonal antiprism | 2 2 5
3.3.3.5
Pap D5d W-- U77(c) K02(c) 10 20 12 2 10{3}+2{5}
Pentagonal trapezohedron


Hexagonal antiprism | 2 2 6
3.3.3.6
Hap D6d W-- U77(d) K02(d) 12 24 14 2 12{3}+2{6}
Hexagonal trapezohedron


Octagonal antiprism | 2 2 8
3.3.3.8
Oap D8d W-- U77(f) K02(f) 16 32 18 2 16{3}+2{8}
Octagonal trapezohedron


Decagonal antiprism | 2 2 10
3.3.3.10
Ennap D10d W-- U77(g) K02(g) 20 40 22 2 20{3}+2{10}
Decagonal trapezohedron


Dodecagonal antiprism | 2 2 12
3.3.3.12
Twap D12d W-- U77(h) K02(h) 24 48 26 2 24{3}+2{12} Image:Dodecagonal trapezohedron.png
Dodecagonal trapezohedron


Cuboctahedron 2 | 3 4
3.4.3.4
Co Oh W11 U07 K12 12 24 14 2 8{3}+6{4}
Rhombic dodecahedron


Small rhombicuboctahedron 3 4 | 2
3.4.4.4
Sirco Oh W13 U10 K15 24 48 26 2 8{3}+(6+12){4}
Deltoidal icositetrahedron


Small rhombicosidodecahedron 3 5 | 2
3.4.5.4
Srid Ih W14 U27 K32 60 120 62 2 20{3}+30{4}+12{5}
Deltoidal hexecontahedron


Icosidodecahedron 2 | 3 5
3.5.3.5
Id Ih W12 U24 K29 30 60 32 2 20{3}+12{5}
Rhombic triacontahedron


[edit] Pentuples

Name Picture Wythoff
symbol
Vertex figure Bowers-style
acronym
Sym.
grp
W# U# K# V E F χ Faces by type Dual
Icosahedron 5 | 2 3
3.3.3.3.3
Ike Ih W4 U22 K27 12 30 20 2 20{3}
Dodecahedron


Snub cube | 2 3 4
3.3.3.3.4
Snic O W17 U12 K17 24 60 38 2 (8+24){3}+6{4}
Pentagonal icositetrahedron


Snub dodecahedron | 2 3 5
3.3.3.3.5
Snid I W18 U29 K34 60 150 92 2 (20+60){3}+12{5}
Pentagonal hexecontahedron


[edit] Nonconvex regulars

Name Picture Wythoff
symbol
Vertex figure Bowers-style
acronym
Sym.
grp
W# U# K# V E F χ Faces by type Dual
Great dodecahedron 5/2 | 2 5
(55)/2
Gad Ih W21 U35 K40 12 30 12 -6 12{5}
Small stellated dodecahedron


Small stellated dodecahedron 5 | 25/2
(5/2)5
Sissid Ih W20 U34 K39 12 30 12 -6 12{5/2}
Great dodecahedron


Great icosahedron 5/2 | 2 3
(35)/2
Gike Ih W41 U53 K58 12 30 20 2 20{3}
Great stellated dodecahedron


Great stellated dodecahedron 3 | 25/2
(5/2)3
Gissid Ih W22 U52 K57 20 30 12 2 12{5/2}
Great icosahedron


[edit] Nonconvex star prisms

Name Picture Wythoff
symbol
Vertex figure Bowers-style
acronym
Sym.
grp
W# U# K# V E F χ Faces by type Dual
Pentagrammic prism 2 5/2 | 2
4.4.5/2
Stip D5h W-- U78(a) K03(a) 10 15 7 2 5{4}+2{5/2} Image:Pentagrammic dipyramid.png
Pentagrammic dipyramid


Pentagrammic antiprism | 2 2 5/2
3.3.3.5/2
Stap D5d W-- U79(a) K04(a) 10 20 12 2 10{3}+2{5/2} Image:Pentagrammic trapezohedron.png
Pentagrammic trapezohedron


Pentagrammic crossed-antiprism | 2 2 5/3
3.3.3.5/3
Starp D5d W-- U80(a) K05(a) 10 20 12 2 10{3}+2{5/2} Image:Pentagrammic concave trapezohedron.png
Pentagrammic concave trapezohedron


[edit] Nonconvex stars by uniform index

Name Picture Wythoff
symbol
Vertex figure Bowers-style
acronym
Sym.
grp
W# U# K# V E F χ Faces by type Dual
Octahemioctahedron 3/23 | 3
3.6.3/2.6
Oho Oh W68 U03 K08 12 24 12 0 8{3}+4{6}
Octahemioctacron


Tetrahemihexahedron 3/23 | 2
3.4.3/2.4
Thah Td W67 U04 K09 6 12 7 1 4{3}+3{4}
Tetrahemihexacron


Small cubicuboctahedron 3/24 | 4
4.8.3/2.8
Socco Oh W69 U13 K18 24 48 20 -4 8{3}+6{4}+6{8}
Small hexacronic icositetrahedron


Great cubicuboctahedron 3 4 | 4/3
3.8/3.4.8/3
Gocco Oh W77 U14 K19 24 48 20 -4 8{3}+6{4}+6{8/3}
Great hexacronic icositetrahedron


Cubohemioctahedron 4/34 | 3
4.6.4/3.6
Cho Oh W78 U15 K20 12 24 10 -2 6{4}+4{6}
Hexahemioctacron


Cubitruncated cuboctahedron 3 44/3 |
6.8.8/3
Cotco Oh W79 U16 K21 48 72 20 -4 8{6}+6{8}+6{8/3}
Tetradyakis hexahedron


Uniform great rhombicuboctahedron 3/24 | 2
4.4.4.3/2
Querco Oh W85 U17 K22 24 48 26 2 8{3}+(6+12){4}
Great deltoidal icositetrahedron


Small rhombihexahedron 2 4 (3/2 4/2) |
4.8.4/3.8
Sroh Oh W86 U18 K23 24 48 18 -6 12{4}+6{8}
Small rhombihexacron


Stellated truncated hexahedron 2 3 | 4/3
3.8/3.8/3
Quith Oh W92 U19 K24 24 36 14 2 8{3}+6{8/3}
Great triakis octahedron


Great truncated cuboctahedron 2 34/3 |
4.6.8/3
Quitco Oh W93 U20 K25 48 72 26 2 12{4}+8{6}+6{8/3}
Great disdyakis dodecahedron


Great rhombihexahedron 2 4/3 (3/2 4/2) |
4.8/3.4/3.8/5
Groh Oh W103 U21 K26 24 48 18 -6 12{4}+6{8/3}
Great rhombihexacron


Small ditrigonal icosidodecahedron 3 | 5/23
(3.5/2)3
Sidtid Ih W70 U30 K35 20 60 32 -8 20{3}+12{5/2}
Small triambic icosahedron


Small icosicosidodecahedron 5/2 3 | 3
6.5/2.6.3
Siid Ih W71 U31 K36 60 120 52 -8 20{3}+12{5/2}+20{6}
Small icosacronic hexacontahedron


Small snub icosicosidodecahedron |5/2 3 3
35.5/2
Seside Ih W110 U32 K37 60 180 112 -8 (40+60){3}+12{5/2}
Small hexagonal hexecontahedron


Small dodecicosidodecahedron 3/25 | 5
5.10.3/2.10
Saddid Ih W72 U33 K38 60 120 44 -16 20{3}+12{5}+12{10}
Small dodecacronic hexecontahedron


Dodecadodecahedron 2 | 5 5/2
5.5/2.5.5/2
Did Ih W73 U36 K41 30 60 24 -6 12{5}+12{5/2}
Medial rhombic triacontahedron


Truncated great dodecahedron 25/2 | 5
10.10.5/2
Tigid Ih W75 U37 K42 60 90 24 -6 12{5/2}+12{10}
Small stellapentakis dodecahedron


Rhombidodecadodecahedron 5/2 5 | 2
4.5/2.4.5
Raded Ih W76 U38 K43 60 120 54 -6 30{4}+12{5}+12{5/2}
Medial deltoidal hexecontahedron


Small rhombidodecahedron 2 5 (3/2 5/2) |
4.10.4/3.10/9
Sird Ih W74 U39 K44 60 120 42 -18 30{4}+12{10}
Small rhombidodecacron


Snub dodecadodecahedron |2 5/2 5
3.3.5/2.3.5
Siddid I W111 U40 K45 60 150 84 -6 60{3}+12{5}+12{5/2}
Medial pentagonal hexecontahedron


Ditrigonal dodecadodecahedron 3 | 5/35
(5.5/3)3
Ditdid Ih W80 U41 K46 20 60 24 -16 12{5}+12{5/2}
Medial triambic icosahedron


Great ditrigonal dodecicosidodecahedron 3 5 | 5/3
3.10/3.5.10/3
Gidditdid Ih W81 U42 K47 60 120 44 -16 20{3}+12{5}+12{10/3}
Great ditrigonal dodecacronic hexecontahedron


Small ditrigonal dodecicosidodecahedron 5/33 | 5
3.10.5/3.10
Sidditdid Ih W82 U43 K48 60 120 44 -16 20{3}+12{5/2}+12{10}
Small ditrigonal dodecacronic hexecontahedron


Icosidodecadodecahedron 5/35 | 3
5.6.5/3.6
Ided Ih W83 U44 K49 60 120 44 -16 12{5}+12{5/2}+20{6}
Medial icosacronic hexecontahedron


Icositruncated dodecadodecahedron 3 55/3 |
6.10.10/3
Idtid Ih W84 U45 K50 120 180 44 -16 20{6}+12{10}+12{10/3}
Tridyakis icosahedron


Snub icosidodecadodecahedron |5/3 3 5
3.3.3.5.3.5/3
Sided I W112 U46 K51 60 180 104 -16 (20+60){3}+12{5}+12{5/2}
Medial hexagonal hexecontahedron


Great ditrigonal icosidodecahedron 3/2 | 3 5
((3.5)3)/2
Gidtid Ih W87 U47 K52 20 60 32 -8 20{3}+12{5}
Great triambic icosahedron


Great icosicosidodecahedron 3/25 | 3
5.6.3/2.6
Giid Ih W88 U48 K53 60 120 52 -8 20{3}+12{5}+20{6}
Great icosacronic hexecontahedron


Small icosihemidodecahedron 3/23 | 5
3.10.3/2.10
Seihid Ih W89 U49 K54 30 60 26 -4 20{3}+6{10}
Small icosihemidodecacron


Small dodecicosahedron 3 5 (3/2 5/4) |
6.10.6/5.10/9
Siddy Ih W90 U50 K55 60 120 32 -28 20{6}+12{10}
Small dodecicosacron


Small dodecahemidodecahedron 5/45 | 5
5.10.5/4.10
Sidhid Ih W91 U51 K56 30 60 18 -12 12{5}+6{10}
Small dodecahemidodecacron


Great icosidodecahedron 2 | 3 5/2
3.5/2.3.5/2
Gid Ih W94 U54 K59 30 60 32 2 20{3}+12{5/2}
Great rhombic triacontahedron


Truncated great icosahedron 25/2 | 3
6.6.5/2
Tiggy Ih W95 U55 K60 60 90 32 2 12{5/2}+20{6}
Great stellapentakis dodecahedron


Rhombicosahedron 2 3 (5/4 5/2) |
4.6.4/3.6/5
Ri Ih W96 U56 K61 60 120 50 -10 30{4}+20{6}
Rhombicosacron


Great snub icosidodecahedron |2 5/2 3
34.5/2
Gosid I W116 U57 K62 60 150 92 2 (20+60){3}+12{5/2}
Great pentagonal hexecontahedron


Small stellated truncated dodecahedron 2 5 | 5/3
5.10/3.10/3
Quitsissid Ih W97 U58 K63 60 90 24 -6 12{5}+12{10/3}
Great pentakis dodecahedron


Truncated dodecadodecahedron 2 55/3 |
4.10.10/3
Quitdid Ih W98 U59 K64 120 180 54 -6 30{4}+12{10}+12{10/3}
Medial disdyakis triacontahedron


Inverted snub dodecadodecahedron |5/3 2 5
3.3.5.3.5/3
Isdid I W114 U60 K65 60 150 84 -6 60{3}+12{5}+12{5/2}
Medial inverted pentagonal hexecontahedron


Great dodecicosidodecahedron 5/2 3 | 5/3
3.10/3.6/5.10/7
Gaddid Ih W99 U61 K66 60 120 44 -16 20{3}+12{5/2}+12{10/3}
Great dodecacronic hexecontahedron


Small dodecahemicosahedron 5/35/2 | 3
6.5/2.6.5/3
Sidhei Ih W100 U62 K67 30 60 22 -8 12{5/2}+10{6}
Small dodecahemicosacron


Great dodecicosahedron 3 5/3 (3/2 5/2) |
6.10/3.6/5.10/7
Giddy Ih W101 U63 K68 60 120 32 -28 20{6}+12{10/3}
Great dodecicosacron


Great snub dodecicosidodecahedron | 5/3 5/2 3
3.3.3.5/2.3.5/3
Gisdid I W115 U64 K69 60 180 104 -16 (20+60){3}+(12+12){5/2}
Great hexagonal hexecontahedron


Great dodecahemicosahedron 5/45 | 3
5.6.5/4.6
Gidhei Ih W102 U65 K70 30 60 22 -8 12{5}+10{6}
Great dodecahemicosacron


Great stellated truncated dodecahedron 2 3 | 5/3
3.10/3.10/3
Quitgissid Ih W104 U66 K71 60 90 32 2 20{3}+12{10/3}
Great triakis icosahedron


Uniform great rhombicosidodecahedron 5/33 | 2
3.4.5/3.4
Qrid Ih W105 U67 K72 60 120 62 2 20{3}+30{4}+12{5/2}
Great deltoidal hexecontahedron


Great truncated icosidodecahedron 2 35/3 |
4.6.10/3
Gaquatid Ih W108 U68 K73 120 180 62 2 30{4}+20{6}+12{10/3}
Great disdyakis triacontahedron


Great inverted snub icosidodecahedron |5/3 2 3
34.5/3
Gisid I W113 U69 K74 60 150 92 2 (20+60){3}+12{5/2}
Great inverted pentagonal hexecontahedron


Great dodecahemidodecahedron 5/35/2 | 5/3
5/2.10/3.5/3.10/3
Gidhid Ih W107 U70 K75 30 60 18 -12 12{5/2}+6{10/3}
Great dodecahemidodecracon


Great icosihemidodecahedron 3 3 | 5/3
3.10/3.3.10/3
Geihid Ih W106 U71 K76 30 60 26 -4 20{3}+6{10/3}
Great icosihemidodecacron


Small retrosnub icosicosidodecahedron |3/2 3/2 5/2
(35.5/3)/2
Sirsid Ih W118 U72 K77 60 180 112 -8 (40+60){3}+12{5/2}
Small hexagrammic hexecontahedron


Great rhombidodecahedron 2 5/3 (3/2 5/4) |
4.10/3.4/3.10/7
Gird Ih W109 U73 K78 60 120 42 -18 30{4}+12{10/3}
Great rhombidodecacron


Great retrosnub icosidodecahedron |3/2 5/3 2
(34.5/2)/2
Girsid I W117 U74 K79 60 150 92 2 (20+60){3}+12{5/2}
Great pentagrammic hexecontahedron


Great dirhombicosidodecahedron |3/2 5/3 3 5/2
(4.5/3.4.3.4.
5/2.4.3/2)/2
Gidrid Ih W119 U75 K80 60 240 124 -56 40{3}+60{4}+24{5/2}
Great dirhombicosadodecacron


Uniform polyhedra db

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu